Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.J.M. Smulders is active.

Publication


Featured researches published by M.J.M. Smulders.


BMC Genomics | 2006

Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes

Teun Wjm van Herpen; S. V. Goryunova; Johanna van der Schoot; Makedonka Mitreva; Elma M. J. Salentijn; Oscar Vorst; M.F. Schenk; Peter A. van Veelen; Frits Koning; Loek van Soest; Ben Vosman; Dirk Bosch; R.J. Hamer; L.J.W.J. Gilissen; M.J.M. Smulders

BackgroundBread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population. Among these proteins, the α-gliadins contain several peptides that are associated to the disease.ResultsWe obtained 230 distinct α-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87%) contained an internal stop codon. All α-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, α-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome) sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-α9 and glia-α20, but never the intact epitopes glia-α and glia-α2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome), as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific.ConclusionOur analysis shows that α-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic analysis of all known epitopes in gliadins and glutenins will lead to better understanding of the differences in toxicity among wheat varieties. On the basis of such insight, breeding strategies can be designed to generate less toxic varieties of wheat which may be tolerated by at least part of the CD patient population.


Theoretical and Applied Genetics | 1997

Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species

M.J.M. Smulders; G. M. M. Bredemeijer; W. Rus-Kortekaas; Paul Arens; Ben Vosman

Abstract A search of nearly 2000 sequences from Solanaceae species in the EMBL and Genbank databases yielded 220 microsatellites. Among these were 80 microsatellites from 675 Lycopersicon entries. Dinucleotide repeats, as well as (CAA)n and (TAA)n repeats, were over-represented in non-coding DNA. The other trinucleotide repeats were predominantly found in exonic DNA. PCR analysis of 44 of the microsatellite-containing Lycopersicon loci identified 36 primer pairs that yielded well-scorable fragments, or groups of fragments, in L. esculentum cultivars and accessions of Lycopersicon species. Twenty-nine of these amplified bands that were polymorphic among the four Lycopersicon species. Ten primer pairs generated polymorphic bands among seven tomato cultivars. Upon examining the number of microsatellites and the degree of polymorphisms in relation to the repeat type and motif, the type of DNA the microsatellite resided in, the length of the microsatellite, and the presence of imperfections in the microsatellite, only two significant correlations were found. (i) Imperfect repeats were less polymorphic among species than perfect repeats. (ii) The percentage of loci polymorphic among cultivars increased from 6% for the shortest loci (with eight or less repeat units) to 60% for the group with the longest repeats (12 repeat units or longer). Among the species, however, all length classes contained about 83% polymorphic loci. In general, 2–4 alleles were found for each locus among the samples of the test set. In a few cases, up to eight alleles were found. A combination of these microsatellite loci can therefore be useful in distinguishing cultivars of tomato, which are genetically very closely related to each other.


Theoretical and Applied Genetics | 2000

Development and characterization of microsatellite markers in black poplar (Populus nigra L.).

J.R. van der Schoot; M. Pospíšková; Ben Vosman; M.J.M. Smulders

Abstract Using an enrichment procedure, we have cloned and sequenced microsatellite loci from black poplar (Populus nigra L.) and developed primers for sequence-tagged microsatellite (STMS) analysis. Twelve primer pairs for dinucleotide repeats produced fragments of sufficient quality which were polymorphic in P. nigra. Some of them also showed amplification in other Populus species (P. deltoides, P. tricocarpa, P. tremula, P. tremuloides, P. candicans, and/or P. lasiocarpa). The best nine and (GT) (GA) microsatellite markers were tested on a set of 23 P. nigra genotypes from all over Europe. The microsatellites were highly polymorphic, with 10–19 different alleles per microsatellite locus among these 23 genotypes. WPMS08 sometimes amplified three fragments. Using the other eight marker loci, the level of heterozygosity among the plants was on average 0.71 (range 0.25–1.00). The microsatellite markers developed will be useful for screening the genetic diversity in natural populations and in gene bank collections.


PLOS Genetics | 2012

New Insight into the History of Domesticated Apple: Secondary Contribution of the European Wild Apple to the Genome of Cultivated Varieties

Amandine Cornille; Pierre Gladieux; M.J.M. Smulders; Isabel Roldán-Ruiz; François Laurens; Bruno Le Cam; Anush Nersesyan; Joanne Clavel; Marina V. Olonova; Laurence Feugey; Ivan Gabrielyan; Xiu-Guo Zhang; Maud I. Tenaillon; Tatiana Giraud

The apple is the most common and culturally important fruit crop of temperate areas. The elucidation of its origin and domestication history is therefore of great interest. The wild Central Asian species Malus sieversii has previously been identified as the main contributor to the genome of the cultivated apple (Malus domestica), on the basis of morphological, molecular, and historical evidence. The possible contribution of other wild species present along the Silk Route running from Asia to Western Europe remains a matter of debate, particularly with respect to the contribution of the European wild apple. We used microsatellite markers and an unprecedented large sampling of five Malus species throughout Eurasia (839 accessions from China to Spain) to show that multiple species have contributed to the genetic makeup of domesticated apples. The wild European crabapple M. sylvestris, in particular, was a major secondary contributor. Bidirectional gene flow between the domesticated apple and the European crabapple resulted in the current M. domestica being genetically more closely related to this species than to its Central Asian progenitor, M. sieversii. We found no evidence of a domestication bottleneck or clonal population structure in apples, despite the use of vegetative propagation by grafting. We show that the evolution of domesticated apples occurred over a long time period and involved more than one wild species. Our results support the view that self-incompatibility, a long lifespan, and cultural practices such as selection from open-pollinated seeds have facilitated introgression from wild relatives and the maintenance of genetic variation during domestication. This combination of processes may account for the diversification of several long-lived perennial crops, yielding domestication patterns different from those observed for annual species.


Heredity | 2001

Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis).

C.C. Vos; A.G. Antonisse-de Jong; P.W. Goedhart; M.J.M. Smulders

Genetic differentiation among populations of the moor frog (Rana arvalis) was tested on a spatial scale where some dispersal between populations is expected to occur, in a landscape in The Netherlands that has become fragmented fairly recently, in the 1930s. Five microsatellite loci were used, with 2–8 alleles per locus. FIS was 0.049 across loci, and most populations were in HW equilibrium. The degree of population subdivision was low (FST=0.052). A significant positive correlation between genetic distance and geographical distance was found, indicating a limitation in dispersal among populations due to distance. To test the impact of the landscape mosaic on the connectivity between patches, distance measures were corrected for relative amounts of habitat types with known positive or negative influence on moor frog dispersal. Notably, the resistance variable for the fraction of negative linear elements (roads and railways) gave a higher explanatory value than geographical distance itself. Therefore, it is particularly the number of barriers (roads and railways) between populations that emerges as a factor that reduces exchange between populations. It is concluded that genetic techniques show promise in determining the influence of landscape connectivity on animal dispersal.


Theoretical and Applied Genetics | 2004

Efficient targeting of plant disease resistance loci using NBS profiling

C. Gerard van der Linden; Doret Wouters; Virag Mihalka; Elena Z. Kochieva; M.J.M. Smulders; Ben Vosman

The conserved sequences in the nucleotide-binding sites of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistance (R) genes have been used for PCR-based R-gene isolation and subsequent development of molecular markers. Here we present a PCR-based approach (NBS profiling) that efficiently targets R genes and R-gene analogs (RGAs) and, at the same time, produces polymorphic markers in these genes. In NBS profiling, genomic DNA is digested with a restriction enzyme, and an NBS-specific (degenerate) primer is used in a PCR reaction towards an adapter linked to the resulting DNA fragments. The NBS profiling protocol generates a reproducible polymorphic multilocus marker profile on a sequencing gel that is highly enriched for R genes and RGAs. NBS profiling was successfully used in potato with several restriction enzymes, and several primers targeted to different conserved motifs in the NBS. Across primers and enzymes, the NBS profiles contained 50–90% fragments that were significantly similar to known R-gene and RGA sequences. The protocol was similarly successful in other crops (including tomato, barley, and lettuce) without modifications. NBS profiling can thus be used to produce markers tightly linked to R genes and R-gene clusters for genomic mapping and positional cloning and to mine for new alleles and new sources of disease resistance in available germplasm.


Theoretical and Applied Genetics | 2003

Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers.

G. D. Esselink; M.J.M. Smulders; Ben Vosman

Abstract.In this study a DNA fingerprinting protocol was developed for the identification of rose varieties based on the variability of microsatellites. Microsatellites were isolated from Rosa hybrida L. using enriched small insert libraries. In total 24 polymorphic sequenced tagged microsatellite site (STMS) markers with easily scorable allele profiles, from six different linkage groups, were used to characterize 46 Hybrid Tea varieties and 30 rootstock varieties belonging to different species (Rosa canina L., Rosa indica Thory., Rosa chinensis Jacq., Rosa rubiginosa L., and Rosa rubrifolia glauca Pour.). Clones and known flower color mutants were identified as being identical, all other varieties were differentiated by a unique pattern with as few as three STMS markers. The high discriminating power of the loci suggests that a selection of the most-robust STMS markers may be able to differentiate any two varieties within rootstocks or Hybrid Teas except for mutants. The selected STMS markers will be useful as a tool for reference collection management, for assessing essential derivation of varieties and illegal propagation.


American Journal of Botany | 2008

AFLP markers as a tool to reconstruct complex relationships: A case study in Rosa (Rosaceae)

Wim J. M. Koopman; Volker Wissemann; Katrien De Cock; Johan Van Huylenbroeck; Jan De Riek; Gerda J.H. Sabatino; Dirk Visser; Ben Vosman; Christiane M. Ritz; Bert Maes; Gun Werlemark; Hilde Nybom; T. Debener; Marcus Linde; M.J.M. Smulders

The genus Rosa has a complex evolutionary history caused by several factors, often in conjunction: extensive hybridization, recent radiation, incomplete lineage sorting, and multiple events of polyploidy. We examined the applicability of AFLP markers for reconstructing (species) relationships in Rosa, using UPGMA clustering, Wagner parsimony, and Bayesian inference. All trees were well resolved, but many of the deeper branches were weakly supported. The cluster analysis showed that the rose cultivars can be separated into a European and an Oriental cluster, each being related to different wild species. The phylogenetic analyses showed that (1) two of the four subgenera (Hulthemia and Platyrhodon) do not deserve subgeneric status; (2) section Carolinae should be merged with sect. Cinnamomeae; (3) subsection Rubigineae is a monophyletic group within sect. Caninae, making sect. Caninae paraphyletic; and (4) there is little support for the distinction of the five other subsections within sect. Caninae. Comparison of the trees with morphological classifications and with previous molecular studies showed that all methods yielded reliable trees. Bayesian inference proved to be a useful alternative to parsimony analysis of AFLP data. Because of their genome-wide sampling, AFLPs are the markers of choice to reconstruct (species) relationships in evolutionary complex groups.


Molecular Ecology | 2003

Genetic variation in the endangered wild apple ( Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers

Els Coart; Xavier Vekemans; M.J.M. Smulders; Iris Wagner; Johan Van Huylenbroeck; Erik Van Bockstaele; Isabel Roldán-Ruiz

The genetic variation within and between wild apple samples (Malus sylvestris) and cultivated apple trees was investigated with amplified fragment length polymorphisms (AFLP) and microsatellite markers to develop a conservation genetics programme for the endangered wild apple in Belgium. In total, 76 putative wild apples (originating from Belgium and Germany), six presumed hybrids and 39 cultivars were typed at 12 simple sequence repeats (SSR) and 139 amplified fragment length polymorphism (AFLP) loci. Principal co‐ordinate analysis and a model‐based clustering method classified the apples into three major gene pools: wild Malus sylvestris genotypes, edible cultivars and ornamental cultivars. All presumed hybrids and two individuals (one Belgian, one German) sampled as M. sylvestris were assigned completely to the edible cultivar gene pool, revealing that cultivated genotypes are present in the wild. However, gene flow between wild and cultivated gene pools is shown to be almost absent, with only three genotypes that showed evidence of admixture between the wild and edible cultivar gene pools. Wild apples sampled in Belgium and Germany constitute gene pools that are clearly differentiated from cultivars and although some geographical pattern of genetic differentiation among wild apple populations exists, most variation is concentrated within samples. Concordant conclusions were obtained from AFLP and SSR markers, which showed highly significant correlations in both among‐genotypes and among‐samples genetic distances.


Theoretical and Applied Genetics | 2008

Genetic structure and diversity of cultivated soybean ( Glycine max (L.) Merr.) landraces in China

Yinghui Li; Rongxia Guan; Zhangxiong Liu; Yansong Ma; Lixia Wang; Linhai Li; Fanyun Lin; Weijiang Luan; Pengyin Chen; Zhe Yan; Yuan Guan; Li Zhu; Xuecheng Ning; M.J.M. Smulders; Wei Li; Rihua Piao; Yanhua Cui; Zhongmei Yu; Min Guan; Ru-Zhen Chang; A. Hou; Ainong Shi; Bo Zhang; Shenlong Zhu; Li-Juan Qiu

The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic differentiation in order to provide useful information for effective management and utilization. A total of 1,160 SSR alleles at 59 SSR loci were detected including 97 unique and 485 low-frequency alleles, which indicated great richness and uniqueness of genetic variation in this core collection. Seven clusters were inferred by STRUCTURE analysis, which is in good agreement with a neighbor-joining tree. The cluster subdivision was also supported by highly significant pairwise Fst values and was generally in accordance with differences in planting area and sowing season. The cluster HSuM, which contains accessions collected from the region between 32.0 and 40.5°N, 105.4 and 122.2°E along the central and downstream parts of the Yellow River, was the most genetically diverse of the seven clusters. This provides the first molecular evidence for the hypotheses that the origin of cultivated soybean is the Yellow River region. A high proportion (95.1%) of pairs of alleles from different loci was in LD in the complete dataset. This was mostly due to overall population structure, since the number of locus pairs in LD was reduced sharply within each of the clusters compared to the complete dataset. This shows that population structure needs to be accounted for in association studies conducted within this collection. The low value of LD within the clusters can be seen as evidence that much of the recombination events in the past have been maintained in soybean, fixed in homozygous self-fertilizing landraces.

Collaboration


Dive into the M.J.M. Smulders's collaboration.

Top Co-Authors

Avatar

L.J.W.J. Gilissen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ben Vosman

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Paul Arens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

L.A.P. Lotz

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elma M. J. Salentijn

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

G. D. Esselink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

I.M. van der Meer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ingrid M. van der Meer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

M.F. Schenk

LSU Health Sciences Center Shreveport

View shared research outputs
Researchain Logo
Decentralizing Knowledge