Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. May is active.

Publication


Featured researches published by M. J. May.


Physics of Plasmas | 2009

Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels

K. B. Fournier; Joe H. Satcher; M. J. May; J. F. Poco; C. Sorce; Jeffrey D. Colvin; Stephanie B. Hansen; S. A. MacLaren; S. Moon; J. F. Davis; F. Girard; Bruno Villette; M. Primout; D. Babonneau; C.A. Coverdale; D. E. Beutler

The x-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas have been measured in the energy range from sub-keV to ≈15 keV at the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The targets’ x-ray yields have been studied for variation in target size, aerogel density, laser pulse length, and laser intensity. For targets that result in plasmas with electron densities in the range of ≈10% of the critical density for 3ω light, one can expect 10–11 J/sr of x rays with energies above 9 keV, and 600–800 J/sr for energies below 3.5 keV. In addition to the x-ray spectral yields, the x-ray temporal waveforms have been measured and it is observed that the emitted x rays generally follow the delivered laser power, with late-time enhancements of emitted x-ray power correlated with hydrodynamic compression of the hot plasma. Further, the laser energy reflected from the target by plasma instabilities is found to be 2%–7% of the incident energy for indiv...


Physics of Plasmas | 2010

Multi-keV x-ray source development experiments on the National Ignition Facility

K. B. Fournier; M. J. May; Jeffrey D. Colvin; Jave O. Kane; M. B. Schneider; E. Dewald; C. A. Thomas; S. Compton; R. Marrs; J. D. Moody; E. Bond; P. Michel; J. H. Fisher; C. D. Newlander; J. F. Davis

We report results from a five shot campaign carried out with Ar–Xe gas-filled targets at the National Ignition Facility (NIF). The targets were shot with ≈350 kJ of 3ω laser energy delivered with a 5 ns trapezoidal laser pulse. We report measured x-ray output from the target in different spectral bands both below and above 1.5 keV photon energies: We find yields of ≈20.5 kJ/sr with peak x-ray power approaching 4 TW/sr over all energies, as measured for the unique viewing angle of our detector, and ≈3.6 kJ/sr with peak x-ray power of 1 TW/sr for x-rays with energies >3 keV. This is a laser-to-x-ray conversion efficiency of 13±1.3% for isotropic x-rays with energies >3 keV. Laser energy reflected by the target plasma for both inner and outer-cone beams is measured and found to be small, between 1% and 4% of the drive energy. The energy emitted in hard x-rays (with energies >25 keV) is measured and found to be ≈1 J/sr. Two-dimensional imaging of the target plasma during the laser pulse confirms a fast, volum...


Physics of Plasmas | 2012

Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

F. Pérez; J. J. Kay; J. R. Patterson; J. Kane; Bruno Villette; F. Girard; C. Reverdin; M. J. May; J. Emig; C. Sorce; Jeffrey D. Colvin; S. Gammon; J. Jaquez; Joe H. Satcher; K. B. Fournier

The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5–8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6−16  mg/cm3) and stainless steel foil-lined cavity targets (steel thickness 1−5  μm). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced Te=2 to 3 keV, ne=0.12−0.2 critical density plasmas yielding a 40%–60% laser-to-x-ray total conversion efficiency (CE) (1.2%–3% in the Fe K-shell range). The foil cavity targets produced Te∼ 2 keV, ne∼ 0.15 critical density plasmas yielding a 60%–75% conversion efficiency (1.6%–2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogel...


Physics of Plasmas | 2010

A computational study of x-ray emission from laser-irradiated Ge-doped foams

Jeffrey D. Colvin; K. B. Fournier; M. J. May; Howard A. Scott

New advances in fabrication of low-density high-Z-doped foams have opened new windows on understanding how materials that are not in local thermodynamic equilibrium (LTE) are heated and radiate. Simulations are discussed in this paper of the x-ray spectral emissions from laser-irradiated very low-density Ge-doped silica aerogel targets using a two-dimensional radiation-hydrodynamics code incorporating a modern non-LTE superconfiguration atomic model. Details of the computational model are presented, and it is shown that, for the long-scale-length, subcritical-density, ∼2–3 keV electron temperature plasmas created in experiments at the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], the simulations provide a close match to both the measured Ge L-shell emission (∼1–1.5 keV) and the measured Ge K-shell emission (∼10–11 keV), but only by accounting properly for nonlocal thermal conduction. The older average-atom atomic model is shown to be inadequate for these non-LTE plasmas.


Review of Scientific Instruments | 2010

Uncertainty analysis technique for OMEGA Dante measurements.

M. J. May; K. Widmann; C. Sorce; H.-S. Park; M. B. Schneider

The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.


Physics of Plasmas | 2006

Plasma filling in reduced-scale hohlraums irradiated with multiple beam cones

M. B. Schneider; D. E. Hinkel; O. L. Landen; D. H. Froula; R. F. Heeter; A. B. Langdon; M. J. May; J. W. McDonald; J. S. Ross; M.S. Singh; L. J. Suter; K. Widmann; B. K. Young; H. A. Baldis; C.G. Constantin; R. E. Bahr; V. Yu. Glebov; W. Seka; C. Stoeckl

The radiation temperature achieved inside a hohlraum, a high-Z cylindrical cavity heated by high-power lasers, is limited by plasma filling of ablated wall material. Recent work [Dewald et al., Phys. Rev. Lett. 95, 215004 (2005)] tested radiation temperature limits in a simple on-axis laser-hohlraum geometry and validated an analytic plasma-fill model. The experiments reported here use several cones of beams to heat a 600μm diameter hohlraum. Thin-walled images show the time evolution: plasma stagnation followed by plasma filling of the hohlraum cavity. Features in the Raman backscatter spectra are correlated to the thin-walled images to measure a fill time. The quantity of hard x rays produced by hot electrons is proportional to the time left in the laser pulse after the fill time. Simulations using the radiation-hydrodynamic code LASNEX and the analytic plasma-fill model predict plasma filling consistent with the data. LASNEX predicts a much higher electron temperature than the analytic model.


Physics of Plasmas | 2005

Laser coupling to reduced-scale hohlraum targets at the Early Light Program of the National Ignition Facility

D. E. Hinkel; M. B. Schneider; H. A. Baldis; G. Bonanno; Dan E. Bower; K. M. Campbell; J. Celeste; S. Compton; R. Costa; E. L. Dewald; S. Dixit; Mark J. Eckart; David C. Eder; M. J. Edwards; A.D. Ellis; J.A. Emig; D. H. Froula; S. H. Glenzer; D. Hargrove; C. A. Haynam; R. F. Heeter; M.A. Henesian; J. P. Holder; G. Holtmeier; L. James; D. H. Kalantar; J. Kamperschroer; R. L. Kauffman; J. R. Kimbrough; R. K. Kirkwood

A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. Depositing maximum laser energy into a small, high-Z enclosure produces this hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Phys. Rev. Lett. 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization or...


Review of Scientific Instruments | 2010

Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas

J. Park; G. V. Brown; M. B. Schneider; H. A. Baldis; P. Beiersdorfer; K. V. Cone; R. L. Kelley; Caroline A. Kilbourne; E. W. Magee; M. J. May; F. S. Porter

We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochesters Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of ∼6-60 Å. The calibration results presented here include the VSGs dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.


Astrophysical Journal Supplement Series | 2005

ACCURATE WAVELENGTH MEASUREMENTS AND MODELING OF Fe XV TO Fe XIX SPECTRA RECORDED IN HIGH-DENSITY PLASMAS BETWEEN 13.5 AND 17 A

M. J. May; P. Beiersdorfer; James Dunn; N. Jordan; Stephanie B. Hansen; Albert L. Osterheld; A. Ya. Faenov; T. A. Pikuz; I. Yu. Skobelev; F. Flora; S. Bollanti; P. Di Lazzaro; Daniele Murra; A. Reale; L. Reale; G. Tomassetti; A. Ritucci; M. Francucci; Sergio Martellucci; G. Petrocelli

Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe XVI and Fe XV in the vicinity of the strong 2p → 3d transitions of Fe XVII. About 80 Δn ≥ 1 lines of Fe XV (Mg-like) to Fe XIX (O-like) were recorded between 13.8 and 17.1 A with a high spectral resolution (λ/Δλ ≈ 4000); about 30 of these lines are from Fe XVI and Fe XV. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 1020 and 1022 cm-3. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe XV-XIX. HULLAC was used to calculate synthetic line intensities at Te = 200 eV and ne = 1021 cm-3 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth ≈200 μm) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain.


Review of Scientific Instruments | 2004

X-ray Spectroscopy with Elliptical Crystals and Face-On Framing Cameras

R. F. Heeter; J. Emig; K. B. Fournier; Stephanie B. Hansen; M. J. May; B. K. Young

X-ray spectrometers using elliptically bent crystals have desirable properties for applications requiring broad spectral coverage, good spectral resolution, and minimized source broadening. Previous work used custom-positioned film or microchannel plate detectors. We find it is also useful and cost-effective to field elliptical crystals in existing snouts on the face-on gated microchannel plate framing cameras commonly used at many facilities. We numerically explored the full design space (spectral range and resolution) of elliptical crystals compatible with the new multipurpose spectrometer snout. We have tested at the Omega laser an elliptical rubidium acid phthalate crystal with 174 mm focal length, 0.9885 eccentricity, and 4.6° inclination, viewing from 1.0 to at least 1.7 keV with spectral resolution E/dE of 300–500. A slit (2×magnification) images 3 mm sources with 70 μm spatial resolution.

Collaboration


Dive into the M. J. May's collaboration.

Top Co-Authors

Avatar

K. B. Fournier

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. B. Schneider

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. Widmann

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Colvin

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Beiersdorfer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephanie B. Hansen

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

D. E. Hinkel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. A. Baldis

University of California

View shared research outputs
Top Co-Authors

Avatar

R. F. Heeter

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. A. Barrios

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge