Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. P. F. G. Monteiro is active.

Publication


Featured researches published by M. J. P. F. G. Monteiro.


Science | 2011

Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

W. J. Chaplin; Hans Kjeldsen; Jørgen Christensen-Dalsgaard; Sarbani Basu; A. Miglio; T. Appourchaux; Timothy R. Bedding; Y. Elsworth; R. A. García; R. L. Gilliland; Léo Girardi; G. Houdek; C. Karoff; S. D. Kawaler; T. S. Metcalfe; J. Molenda-Żakowicz; M. J. P. F. G. Monteiro; M. J. Thompson; G. A. Verner; J. Ballot; Alfio Bonanno; I. M. Brandão; Anne-Marie Broomhall; H. Bruntt; T. L. Campante; E. Corsaro; O. L. Creevey; G. Doğan; Lisa Esch; Ning Gai

Measurements of 500 Sun-like stars show that their properties differ from those predicted by stellar population models. In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.


Astronomy and Astrophysics | 2007

A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES)

S. G. Sousa; N. C. Santos; G. Israelian; M. Mayor; M. J. P. F. G. Monteiro

Aims. We present a new automatic code (ARES) for determining equivalent widths of the absorption lines present in stellar spectra. We also describe its use for determining fundamental spectroscopic stellar parameters. Methods. The code is written in C++ based on the standard method of determining EWs and is available for the community. The code automates the manual procedure that the users normally carry out when using interactive routines such as the splot routine implemented in IRAF. Results. We test the code using both simulated and real spectra with different levels of resolution and noise and comparing its measurements to the manual ones obtained in the standard way. The results shows a small systematic difference, always below 1.5 mA. This can be explained by errors in the manual measurements caused by subjective continuum determination. The code works better and faster than others tested before.


The Astrophysical Journal | 2011

Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

D. Huber; Timothy R. Bedding; D. Stello; S. Hekker; S. Mathur; B. Mosser; G. A. Verner; Alfio Bonanno; Derek L. Buzasi; T. L. Campante; Y. Elsworth; S. J. Hale; T. Kallinger; V. Silva Aguirre; W. J. Chaplin; J. De Ridder; R. A. García; T. Appourchaux; S. Frandsen; G. Houdek; J. Molenda-Żakowicz; M. J. P. F. G. Monteiro; Jørgen Christensen-Dalsgaard; R. L. Gilliland; S. D. Kawaler; Hans Kjeldsen; Anne-Marie Broomhall; E. Corsaro; D. Salabert; Dwight T. Sanderfer

We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.


Science | 2008

CoRoT measures solar-like oscillations and granulation in stars hotter than the Sun.

Eric Michel; A. Baglin; Michel Auvergne; C. Catala; R. Samadi; F. Baudin; T. Appourchaux; C. Barban; W. W. Weiss; G. Berthomieu; Patrick Boumier; Marc-Antoine Dupret; R. A. García; M. Fridlund; R. Garrido; M. J. Goupil; Hans Kjeldsen; Y. Lebreton; Benoit Mosser; A. Grotsch-Noels; E. Janot-Pacheco; J. Provost; Ian W. Roxburgh; Anne Thoul; Thierry Toutain; Didier Tiphène; Sylvaine Turck-Chieze; Sylvie Vauclair; G. Vauclair; Conny Aerts

Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.


Astrophysical Journal Supplement Series | 2013

Asteroseismic Fundamental Properties of Solar-type Stars Observed by the NASA Kepler Mission

W. J. Chaplin; Sarbani Basu; Daniel Huber; Aldo M. Serenelli; Luca Casagrande; V. Silva Aguirre; Warrick H. Ball; O. L. Creevey; Laurent Gizon; R. Handberg; C. Karoff; R. Lutz; J. P. Marques; A. Miglio; D. Stello; Marian Doru Suran; D. Pricopi; T. S. Metcalfe; M. J. P. F. G. Monteiro; J. Molenda-Żakowicz; T. Appourchaux; J. Christensen-Dalsgaard; Y. Elsworth; R. A. García; G. Houdek; Hans Kjeldsen; Alfio Bonanno; T. L. Campante; E. Corsaro; P. Gaulme

We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T eff, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important.


The Astrophysical Journal | 2012

Fundamental Properties of Stars Using Asteroseismology from Kepler and CoRoT and Interferometry from the CHARA Array

D. Huber; Michael J. Ireland; Timothy R. Bedding; I. M. Brandão; L. Piau; V. Maestro; T. R. White; H. Bruntt; Luca Casagrande; J. Molenda-Żakowicz; V. Silva Aguirre; S. G. Sousa; Christopher J. Burke; W. J. Chaplin; J. Christensen-Dalsgaard; M. S. Cunha; J. De Ridder; C. Farrington; A. Frasca; R. A. García; R. L. Gilliland; P. J. Goldfinger; S. Hekker; S. D. Kawaler; Hans Kjeldsen; H. McAlister; T. S. Metcalfe; A. Miglio; M. J. P. F. G. Monteiro; Marc H. Pinsonneault

We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes, and high-resolution spectroscopy, we derive a full set of near-model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (?max) and the large frequency separation (??). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to 4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T eff = 4600-6200 K of ?22 ? 32 K (with a scatter of 97?K) and ?58 ? 31 K (with a scatter of 93?K), respectively. Finally, we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD?173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modeling of individual oscillation frequencies.


Science | 1996

The Seismic Structure of the Sun

D. O. Gough; Alexander G. Kosovichev; Juri Toomre; Emmet R. Anderson; H. M. Antia; Sarbani Basu; Brian Chaboyer; S. M. Chitre; Jørgen Christensen-Dalsgaard; W. A. Dziembowski; Antonio M. Eff-Darwich; J. R. Elliott; P. M. Giles; Philip R. Goode; Joyce Ann Guzik; John Warren Harvey; Frank Hill; John W. Leibacher; M. J. P. F. G. Monteiro; O. Richard; T. Sekii; Hiromoto Shibahashi; Masaki Takata; M. J. Thompson; Sylvie Vauclair; S. V. Vorontsov

Global Oscillation Network Group data reveal that the internal structure of the sun can be well represented by a calibrated standard model. However, immediately beneath the convection zone and at the edge of the energy-generating core, the sound-speed variation is somewhat smoother in the sun than it is in the model. This could be a consequence of chemical inhomogeneity that is too severe in the model, perhaps owing to inaccurate modeling of gravitational settling or to neglected macroscopic motion that may be present in the sun. Accurate knowledge of the suns structure enables inferences to be made about the physics that controls the sun; for example, through the opacity, the equation of state, or wave motion. Those inferences can then be used elsewhere in astrophysics.


The Astrophysical Journal | 2012

A Uniform Asteroseismic Analysis of 22 Solar-type Stars Observed by Kepler

S. Mathur; T. S. Metcalfe; M. Woitaszek; H. Bruntt; G. A. Verner; Jørgen Christensen-Dalsgaard; O. L. Creevey; G. Doğan; Sarbani Basu; C. Karoff; D. Stello; T. Appourchaux; T. L. Campante; W. J. Chaplin; R. A. García; Timothy R. Bedding; O. Benomar; Alfio Bonanno; S. Deheuvels; Y. Elsworth; P. Gaulme; Joyce Ann Guzik; R. Handberg; S. Hekker; W. Herzberg; M. J. P. F. G. Monteiro; L. Piau; P.-O. Quirion; C. Regulo; Mary Tork Roth

Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to ~1% precision, and ages to ~2.5% precision (respectively, 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.


The Astrophysical Journal | 2009

Radius Determination of Solar-type Stars Using Asteroseismology: What to Expect from the Kepler Mission

D. Stello; W. J. Chaplin; H. Bruntt; O. L. Creevey; Antonio García-Hernández; M. J. P. F. G. Monteiro; Andrés Moya; P.-O. Quirion; S. G. Sousa; Juan-Carlos Suárez; T. Appourchaux; T. Arentoft; J. Ballot; Timothy R. Bedding; Jørgen Christensen-Dalsgaard; Y. Elsworth; Stephen Fletcher; R. A. García; G. Houdek; Sebastian J. Jimenez-Reyes; Hans Kjeldsen; R. New; C. Regulo; D. Salabert; Thierry Toutain

For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA’s Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of “hares” simulated data of F–K main-sequence stars that a group of “hounds” sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 <V <15, both with and without parallaxes. We further test different uncertainties in Teff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5–10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that Teff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.


The Astrophysical Journal | 2010

A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764

T. S. Metcalfe; M. J. P. F. G. Monteiro; M. J. Thompson; J. Molenda-Żakowicz; T. Appourchaux; W. J. Chaplin; G. Doğan; P. Eggenberger; Timothy R. Bedding; H. Bruntt; O. L. Creevey; P.-O. Quirion; D. Stello; Alfio Bonanno; V. Silva Aguirre; Sarbani Basu; Lisa Esch; Ning Gai; M. Di Mauro; Alexander G. Kosovichev; Irina N. Kitiashvili; J. C. Suárez; Andrés Moya; L. Piau; R. A. García; J. P. Marques; Antonio Frasca; K. Biazzo; S. G. Sousa; S. Dreizler

The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties.

Collaboration


Dive into the M. J. P. F. G. Monteiro's collaboration.

Top Co-Authors

Avatar

W. J. Chaplin

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. A. García

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. J. Thompson

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. L. Campante

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge