M.J. Pacheco
University of Beira Interior
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.J. Pacheco.
Journal of Hazardous Materials | 2011
M.J. Pacheco; V. Santos; L. Ciríaco; A. Lopes
The electrochemical oxidation of four aromatic amines, with different substituent groups, 3-amino-4-hydroxy-5-nitrobenzenesulfonic acid (A1), 5-amino-2-methoxybenzenesulfonic acid (A2), 2,4-dihydroxyaniline hydrochloride (A3) and benzene-1,4-diamine (A4), was performed using as anode a boron-doped diamond electrode, commercially available at Adamant Technologies. Tests were run at room temperature with model solutions of the different amines, with concentrations of 200 ppm, using as electrolyte 0.035 M Na(2)SO(4) aqueous solutions, in a batch cell with recirculation, at different current densities (200 and 300 A m(-2)). The following analyses were performed with the samples collected during the assays: UV-Vis spectrophotometry, chemical oxygen demand (COD), total organic carbon (TOC), total Kjeldahl nitrogen, ammonia nitrogen, nitrates and HPLC. Results have shown a good electrodegradation of all the amines tested, with COD removals, after 6 h assays, higher than 90% and TOC removals between 60 and 80%. Combustion efficiency (η(C)), which measures the tendency to convert organic carbon to CO(2), was also determined for all the amines, being η(CA1)
Chemosphere | 2010
V. Santos; J. Diogo; M.J. Pacheco; L. Ciríaco; A. Morão; A. Lopes
The electrochemical oxidation of aniline (AN) and ortanilic (OA), metanilic (MA) and sulfanilic (SA) acids was performed using as anode a boron-doped diamond (BDD) electrode. Tests were performed with model solutions of the different amines, with concentrations of 200mg L(-1), using as electrolyte 0.035 M Na2SO4, in a batch cell, with re-circulation, at different current densities (200 and 300 A m(-2)). Samples were collected at pre-selected intervals and absorbance measurements, Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), Total Kjeldahl Nitrogen, Ammonia Nitrogen, Nitrates and Nitrites and HPLC analysis were performed. Results have shown a good elimination of the persistent pollutant, with COD and TOC removals always higher than, respectively: AN--91% and 90%; OA--75% and 82%; MA--88% and 87%; and SA--85% and 79%. The combustion efficiencies, calculated for the first hour of the runs, for the 300 A m(-2) assays, were the following: AN--0.93; OA--0.28; MA--0.82; and SA--0.83. For all the amines studied, after 6h degradation only oxalic and maleic acids were identified by HPLC.
Journal of Hazardous Materials | 2012
A. Fernandes; M.J. Pacheco; L. Ciríaco; A. Lopes
In the present study, the anodic oxidation of a leachate from an intermunicipal sanitary landfill was evaluated using a boron-doped diamond anode as a possible post-treatment to the biological one, in order to diminish the remaining bio-refractory organic matter. The influence of the dilution of the leachate sample and the applied current density on the performance of electrochemical oxidation was investigated. For the different assays performed, a comparison between the theoretical kinetic model for organic mineralization, proposed in the literature, and experimental data was done and the best correspondences were attained at lower applied current density for sample without dilution and at higher applied current density for the more diluted sample. However, the energetic most favourable treatment is attained for sample without dilution at very low current density. The DOC/COD ratio was also analysed and apparently, the mineralization of the organic matter improves with the dilution of the leachate samples.
Science of The Total Environment | 2016
A. Fernandes; D. Santos; M.J. Pacheco; L. Ciríaco; A. Lopes
The influence of applied current density and chloride ion concentration on the ability of Ti/Pt/PbO2 and Ti/Pt/SnO2-Sb2O4 anodes for the electrochemical oxidation of humic acid and sanitary landfill leachate samples was assessed and compared with that of BDD anode. For the experimental conditions used, results show that both organic load and nitrogen removal rates increase with the applied current density and chloride ion concentration, although there is an optimum COD/[Cl-]0 ratio below which there is no further increase in COD removal. Metal oxide anodes present a similar performance to that of BDD, being the results obtained for Ti/Pt/PbO2 slightly better than for Ti/Pt/SnO2-Sb2O4. Contrary to BDD, Ti/Pt/PbO2 promotes lower nitrate formation and is the most suitable material for total nitrogen elimination. The importance of the optimum ratio of Cl-/COD/NH4 +initial concentrations is discussed.
Journal of Environmental Management | 2016
Lazhar Labiadh; A. Fernandes; L. Ciríaco; M.J. Pacheco; Abdellatif Gadri; Salah Ammar; A. Lopes
Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent.
Environmental Technology | 2015
A. Fernandes; Diana Santos; M.J. Pacheco; L. Ciríaco; Rogério Simões; Arlindo C. Gomes; A. Lopes
Anodic oxidation at a boron-doped diamond anode of cork boiling wastewater was successfully used for mineralization and biodegradability enhancement required for effluent discharge or subsequent biological treatment, respectively. The influence of the applied current density (30–70 mA/cm2) and the background electrolyte concentration (0–1.5 g/L Na2SO4) on the performance of the electrochemical oxidation was investigated. The supporting electrolyte was required to achieve conductivities that enabled anodic oxidation at the highest current intensities applied. The results indicated that pollutant removal increased with the applied current density, and after 8 h, reductions greater than 90% were achieved for COD, dissolved organic carbon, total phenols and colour. The biodegradability enhancement was from 0.13 to 0.59 and from 0.23 to 0.72 for the BOD/COD ratios with BOD of 5 and 20 days’ incubation period, respectively. The tests without added electrolyte were performed at lower applied electrical charges (15 mA/cm2 or 30 V) with good organic load removal (up to 80%). For an applied current density of 30 mA/cm2, there was a minimum of electric conductivity of 1.9 mS/cm (corresponding to 0.75 g/L of Na2SO4), which minimized the specific energy consumption.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2016
Maria João Nunes; Nuno Monteiro; M.J. Pacheco; A. Lopes; L. Ciríaco
ABSTRACT The behaviors of the electrodes Ti/PbO2 and Ti/Pt/PbO2 as anodes in the electro-oxidation of two antibiotics—tetracycline and oxytetracycline—were evaluated at different applied current densities, to evaluate the influence of the Pt interlayer. In the preparation of the electrodes, the electrodeposited β-PbO2 phase was homogeneous; no Ti or Pt peaks were detected in the diffractograms. The β-PbO2 surface presented significant roughness when deposited over the Pt interlayer, which also conferred significant conductivity to the material. In the electro-oxidation assays, the COD, TOC and absorbance removals increased with the current density due to an increase in the concentration of hydroxyl radicals, for both electrode materials and antibiotics tested. Slightly better results were obtained with Ti/PbO2. The primary differences observed in the antibiotics concentration decay consisted of zero-order kinetics at the Ti/Pt/PbO2 anode and first-order kinetics at the Ti/PbO2 anode with a higher oxytetracycline concentration decay than the tetracycline concentration decay. A greater amount of total nitrogen was eliminated with the Ti/PbO2 electrode. At the Ti/Pt/PbO2 anode, the organic nitrogen primarily transformed into NH4+ and the total nitrogen remained unchanged. The specific energy consumption with the Ti/Pt/PbO2 anode was significantly lower than the specific energy consumption with the Ti/PbO2 anode due to the higher electrical conductivity of the Ti/Pt/PbO2 anode. Both anode materials were also utilized in the electro-oxidation of a leachate sample collected at sanitary landfill and spiked with tetracycline, and the complete elimination of the antibiotic molecule was observed.
Interdisciplinary Research in Engineering: Steps towards Breakthrough Innovation for Sustainable Development | 2013
Carmen Ionela Brinzila; L. Ciríaco; M.J. Pacheco; A. Lopes; Romeo Cristian Ciobanu
Antibiotics named tetracycline (TC) are the most popular group of pharmaceutical compounds used in therapeutic purpose in human and veterinary medicine and in aquaculture, due to their characteristics as broad spectrum antibiotic. The tetracyclines are a group of natural and semisynthetic products that are bacteriostatic agents with activity against a wide variety of organisms, but of limited use today because of acquired resistance. Even at low concentrations, tetracycline and its metabolites may have a negative influence on the environment. Tetracycline is weakly metabolized or absorbed into the body, some of the ingested antibiotic being eliminated through urine and feces directly into the environment as most of the primarily unchanged form or secondary compounds. Nowadays tetracycline residues can be detected in surface water that was discharged from municipal wastewater treatment plants and agricultural drained. In this study, the degradation of tetracycline and the influence of experimental parameters (initial pH, initial concentration, different flow velocity (mL/s), solution temperature (°C), current intensity (mA)) on electrochemical degradation with BDD electrode were evaluated. The following parameters were analyzed for the samples collected during the electrochemical assays in electrochemical cell with stirrier and BDD/stainless steel electrodes: Chemical oxygen demand (COD), total organic carbon, nitrogen (total Kjeldhal, organic and inorganic), HPLC and UV-Visible absorption spectrophotometry.
Journal of the Brazilian Chemical Society | 2016
Paulo C. Caliari; M.J. Pacheco; L. Ciríaco; A. Lopes
The kinetics of the conversion of sulfide to sulfate by electro-oxidation, using a boron-doped diamond (BDD) electrode was studied. Different applied current densities were tested, from 10 to 60 mA cm-2. The results showed that the electrochemical conversion of sulfide to sulfate occurs in steps, via intermediate production of other sulfur species. The oxidation rate of the sulfide ion is dependent on its concentration and current density. The reaction order varies with the current intensity, being 2 for the lower applied current intensity and high S2- concentration, which is compatible with a mechanism involving two S2- ions to give S22-. For higher current densities, where current control is less important, reaction order varies from 0.15 to 0.44 for the current densities of 20 and 60 mA cm-2, respectively. For the formation of SO42- from S2- electro-oxidation, the reaction orders with respect to sulfide concentration and current intensity are 0 and 1, respectively.
Environmental Science and Pollution Research | 2016
A. Fernandes; João Coelho; L. Ciríaco; M.J. Pacheco; A. Lopes
Boron-doped diamond (BDD) and Ti/Pt/PbO2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH4+, which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.