Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. Sanz is active.

Publication


Featured researches published by M. J. Sanz.


Nature | 2005

Europe-wide reduction in primary productivity caused by the heat and drought in 2003

Ph. Ciais; Markus Reichstein; Nicolas Viovy; A. Granier; Jérôme Ogée; Vincent Allard; Marc Aubinet; Nina Buchmann; Chr. Bernhofer; Arnaud Carrara; F. Chevallier; N. de Noblet; Andrew D. Friend; Pierre Friedlingstein; Thomas Grünwald; Bernard Heinesch; P. Keronen; Alexander Knohl; Gerhard Krinner; Denis Loustau; Giovanni Manca; Giorgio Matteucci; F. Miglietta; Jean-Marc Ourcival; D. Papale; Kim Pilegaard; Serge Rambal; Günther Seufert; Jean-François Soussana; M. J. Sanz

Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5u2009Pgu2009Cu2009yr-1) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europes primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.


Journal of Applied Meteorology | 2000

Ozone Cycles in the Western Mediterranean Basin: Interpretation of Monitoring Data in Complex Coastal Terrain

Millán Millán; Enrique Mantilla; Rosa Salvador; Adoración Carratalá; M. J. Sanz; Lucio Alonso; G. Gangoiti; Marino Navazo

Abstract In summer, the complex layout of the coasts and mountains surrounding the western Mediterranean basin favors the development of mesoscale atmospheric recirculations and the formation of ozone reservoir layers above the coastal areas and the sea. Tropospheric ozone cycles vary here according to location and exposure of the monitoring station in relation to the flows and reservoir layers, and large differences can be encountered within tens of kilometers. The basic premise for this work is that the representativeness of any station is determined by the (fore)knowledge of the processes affecting the site, at the proper timescales and space scales within its region. Thus, available data have been combined with mesoscale analysis and modeling to interpret the observed summer ozone cycles for the monitoring network at Castellon, on the Spanish east coast. The area is approximately 120 km by 120 km, is backed by coastal mountains, and includes the following: a conurbation, industries, and a densely trav...


Rangeland Ecology & Management | 2010

Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived From Flux-Tower Measurements

Tagir G. Gilmanov; Luis Miguel Igreja Aires; Zoltán Barcza; V. S. Baron; L. Belelli; Jason Beringer; David P. Billesbach; Damien Bonal; James A. Bradford; Eric Ceschia; David R. Cook; Chiara A. R. Corradi; Albert B. Frank; Damiano Gianelle; Cristina Gimeno; T. Gruenwald; Haiqiang Guo; Niall P. Hanan; László Haszpra; J. Heilman; A. Jacobs; Michael Jones; Douglas A. Johnson; Gerard Kiely; Shenggong Li; Vincenzo Magliulo; E.J. Moors; Zoltán Nagy; M. Nasyrov; Clenton E. Owensby

Abstract Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (αu200au200a=u200au200a75 mmolu200a·u200amol−1), photosynthetic capacity (Amaxu200au200a=u200au200a3.4 mg CO2u200a·u200am−2u200a·u200as−1), gross photosynthesis (Pg,maxu200au200a=u200au200a116 g CO2u200a·u200am−2u200a·u200ad−1), and ecological light-use efficiency (εecolu200au200a=u200au200a59 mmolu200a·u200amol−1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8u200a600 g CO2u200a·u200am−2u200a·u200ayr−1), total ecosystem respiration (7u200a900 g CO2u200a·u200am−2u200a·u200ayr−1), and net CO2 exchange (2u200a400 g CO2u200a·u200am−2u200a·u200ayr−1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2u200a·u200am−2u200a·u200ayr−1 for intensive grasslands and 933 g CO2u200a·u200am−2u200a·u200ad−1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.


Global Biogeochemical Cycles | 2008

Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval

Nuno Carvalhais; Markus Reichstein; Júlia Seixas; G. James Collatz; J. S. Pereira; Paul Berbigier; Arnaud Carrara; André Granier; Leonardo Montagnani; Dario Papale; Serge Rambal; M. J. Sanz; Riccardo Valentini

We analyze the impacts of the steady state assumption on inverse model parameter retrieval from biogeochemical models. An inverse model parameterization study using eddy covariance CO 2 flux data was performed with the Carnegie Ames Stanford Approach (CASA) model under conditions of strict and relaxed carbon cycle steady state assumption (CCSSA) in order to evaluate both the robustness of the models structure for the simulation of net ecosystem carbon fluxes and the assessment of the CCSSA effects on simulations and parameter estimation. Net ecosystem production (NEP) measurements from several eddy covariance sites were compared with NEP estimates from the CASA model driven by local weather station climate inputs as well as by remotely sensed fraction of photosynthetically active radiation absorbed by vegetation and leaf area index. The parameters considered for optimization are directly related to aboveground and belowground modeled responses to temperature and water availability, as well as a parameter (η) that relaxed the CCSSA in the model, allowing for site level simulations to be initialized either as net sinks or sources. A robust relationship was observed between NEP observations and predictions for most of the sites through the range of temporal scales considered (daily, weekly, biweekly, and monthly), supporting the conclusion that the model structure is able to capture the main processes explaining NEP variability. Overall, relaxing CCSSA increased model efficiency (21%) and decreased normalized average error (-92%). Intersite variability was a major source of variance in model performance differences between fixed (CCSSA f ) and relaxed (CCSSA r ) CCSSA conditions. These differences were correlated with mean annual NEP observations, where an average increase in modeling efficiency of 0.06 per 100 g Cm -2 a -1 (where a is years) of NEP is observed (α < 0.003). The parameter η was found to be a key parameter in the optimization exercise, generating significant model efficiency losses when removed from the initial parameter set and parameter uncertainties were significantly lower under CCSSA r . Moreover, modeled soil carbon stocks were generally closer to observations once the steady state assumption was relaxed. Finally, we also show that estimates of individual parameters are affected by the steady state assumption. For example, estimates of radiation-use efficiency were strongly affected by the CCSSA f indicating compensation effects for the inadequate steady state assumption, leading to effective and thus biased parameters. Overall, the importance of model structural evaluation in data assimilation approaches is thus emphasized.


Ecosystems | 2008

Biotic, Abiotic, and Management Controls on the Net Ecosystem CO2 Exchange of European Mountain Grassland Ecosystems

Georg Wohlfahrt; Margaret Anderson-Dunn; Michael Bahn; Manuela Balzarolo; Frank Berninger; Claire Campbell; Arnaud Carrara; Alessandro Cescatti; Torben R. Christensen; Sabina Dore; Werner Eugster; Thomas Friborg; Markus Furger; Damiano Gianelle; Cristina Gimeno; K.J. Hargreaves; Pertti Hari; Alois Haslwanter; Torbjörn Johansson; Barbara Marcolla; C. Milford; Zoltán Nagy; E. Nemitz; Nele Rogiers; M. J. Sanz; Rolf T. W. Siegwolf; Sanna Susiluoto; Mark A. Sutton; Zoltán Tuba; Francesca Ugolini

The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002–2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE. Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem respiration at the Alpine and northern study sites, but not at the southern sites characterized by a pronounced summer drought, where soil water availability and the amount of aboveground biomass were more or equally important. The amount of assimilating plant area was the single most important biotic variable determining the maximum ecosystem carbon uptake potential, that is, the NEE at saturating PPFD. Good correspondence, in terms of the magnitude of NEE, was observed with many (semi-) natural grasslands around the world, but not with grasslands sown on fertile soils in lowland locations, which exhibited higher maximum carbon gains at lower respiratory costs. It is concluded that, through triggering rapid changes in the amount and area of the aboveground plant matter, the timing and frequency of land management practices is crucial for the short-term sensitivity of the NEE of the investigated mountain grassland ecosystems to climatic drivers.


Water Air and Soil Pollution | 1999

Observation and Confirmation of Foliar Ozone Symptoms of Native Plant Species of Switzerland and Southern Spain

John M. Skelly; John L. Innes; J.E. Savage; K.R. Snyder; D.J Vanderheyden; J. Zhang; M. J. Sanz

Tropospheric ozone is considered as the major pollutant of concern to the health and productivity of forests in the eastern United States and has more recently become of increasing concern within the forests of southern Europe. Recent observations have clearly demonstrated foliar injury symptoms to be occurring on many tree and native plant species within remote forested areas. Several plant genera (and a few species within genera) found in both the forests of Switzerland and the southern coastal region of Spain exhibit field symptoms typical of ambient ozone exposures. Ozone exposures for many species have been conducted under controlled CSTR conditions and within open-top chambers within the study areas. Results have confirmed that the O3-like foliar symptoms as observed under natural forest and open grown conditions for many native tree, shrub, and herbaceous species in Spain and Switzerland are caused by exposures to ambient O3.


Journal of Climate | 2005

Climatic feedbacks and desertification: The Mediterranean model

Millán Millán; M. J. Estrela; M. J. Sanz; Enrique Mantilla; M. Martín; F. Pastor; Rosa Salvador; R. Vallejo; Lucio Alonso; G. Gangoiti; J. L. Ilardia; Marino Navazo; A. Albizuri; B. Artíñano; P. Ciccioli; George Kallos; R. A. Carvalho; D. Andrés; A. Hoff; J. Werhahn; Günther Seufert; B. Versino

Abstract Mesometeorological information obtained in several research projects in southern Europe has been used to analyze perceived changes in the western Mediterranean summer storm regime. A procedure was developed to disaggregate daily precipitation data into three main components: frontal precipitation, summer storms, and Mediterranean cyclogenesis. Working hypotheses were derived on the likely processes involved. The results indicate that the precipitation regime in this Mediterranean region is very sensitive to variations in surface airmass temperature and moisture. Land-use perturbations that accumulated over historical time and greatly accelerated in the last 30 yr may have induced changes from an open, monsoon-type regime with frequent summer storms over the mountains inland to one dominated by closed vertical recirculations where feedback mechanisms favor the loss of storms over the coastal mountains and additional heating of the sea surface temperature during summer. This, in turn, favors Medite...


Bulletin of the American Meteorological Society | 2006

The CarboEurope Regional Experiment Strategy

A. J. Dolman; J. Noilhan; P. Durand; C. Sarrat; A. Brut; B. Piguet; A. Butet; N. Jarosz; Y. Brunet; Denis Loustau; E. Lamaud; L. F. Tolk; R. Ronda; F. Miglietta; Beniamino Gioli; V. Magliulo; M. Esposito; Christoph Gerbig; S. Körner; P. Glademard; M. Ramonet; P. Ciais; B. Neininger; R. W. A. Hutjes; J.A. Elbers; R. Macatangay; O. Schrems; G. Pérez-Landa; M. J. Sanz; Y. Scholz

Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May?June 2005, to determine the variability in concentration gradients and fluxes of CO2. The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to concentration sample the CO2 and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns. Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.


Environmental Pollution | 2011

Responses of evergreen and deciduous Quercus species to enhanced ozone levels

Vicent Calatayud; Júlia Cerveró; Esperanza Calvo; Francisco-José García-Breijo; José Reig-Armiñana; M. J. Sanz

Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD1.6) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels.


Environmental Pollution | 2003

Response of native plants of northeastern United States and southern Spain to ozone exposures; determining exposure/response relationships

T. Orendovici; John M. Skelly; J.A. Ferdinand; J.E. Savage; M. J. Sanz; G.C. Smith

Tropospheric ozone has been identified as the most important regional scale air pollutant across much of eastern United States of America and many areas of Mediterranean climes in southern Europe. Recent field surveys in the northeastern USA and in southeastern Spain have revealed many additional plant species that exhibit symptoms typical of ozone-induced injuries. Objectives of this study were to confirm ozone as the cause of the observed foliar symptoms, determine ozone induced exposure/response relationships, and identify possible bio-indicator species. Thirteen native species of northeastern USA and 27 native species of southeastern Spain were selected for study. Plant species were exposed to ozone within 16 CSTR chambers in a greenhouse during the summer seasons of 2000 and 2001; ozone exposures of 30, 60, 90, and 120 ppb were delivered for 7 h/day, 5 days/week. Results have confirmed that with few exceptions, symptoms observed in the field were induced by exposures to ambient ozone. Species differed significantly in terms of the exposures required for the initiation of visible symptoms and subsequent injury progression.

Collaboration


Dive into the M. J. Sanz's collaboration.

Top Co-Authors

Avatar

Vicent Calatayud

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Millán Millán

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

F. Miglietta

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Thomas Grünwald

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Beniamino Gioli

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge