M. J. Singh
ITER
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. J. Singh.
Nuclear Fusion | 2016
P. Agostinetti; Daniele Aprile; V. Antoni; M. Cavenago; G. Chitarin; H.P.L. de Esch; A. De Lorenzi; N. Fonnesu; G. Gambetta; R.S. Hemsworth; M. Kashiwagi; N. Marconato; D. Marcuzzi; N. Pilan; Emanuele Sartori; Gianluigi Serianni; M. J. Singh; P. Sonato; Emanuele Spada; Vanni Toigo; Pierluigi Veltri; Pierluigi Zaccaria
The ITER Neutral Beam Test Facility (PRIMA) is presently under construction at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: an ITER-size ion source with low voltage extraction, called SPIDER, and the full prototype of the whole ITER Heating Neutral Beams (HNBs), called MITICA.The purpose of MITICA is to demonstrate that all operational parameters of the ITER HNB accelerator can be experimentally achieved, thus establishing a large step forward in the performances of neutral beam injectors in comparison with the present experimental devices.The design of the MITICA extractor and accelerator grids, here described in detail, was developed using an integrated approach, taking into consideration at the same time all the relevant physics and engineering aspects. Particular care was taken also to support and validate the design on the basis of the expertise and experimental data made available by the collaborating neutral beam laboratories of CEA, IPP, CCFE, NIFS and JAEA. Considering the operational requirements and the other physics constraints of the ITER HNBs, the whole design has been thoroughly optimized and improved. Furthermore, specific innovative concepts have been introduced.
Nuclear Fusion | 2015
H.P.L. de Esch; M. Kashiwagi; M. Taniguchi; T. Inoue; G. Serianni; P. Agostinetti; G. Chitarin; N. Marconato; E. Sartori; P. Sonato; P. Veltri; N. Pilan; Daniele Aprile; N. Fonnesu; V. Antoni; M. J. Singh; R.S. Hemsworth; M. Cavenago
The physics design of the accelerator for the heating neutral beamline on ITER is now finished and this paper describes the considerations and choices which constitute the basis of this design. Equal acceleration gaps of 88 mm have been chosen to improve the voltage holding capability while keeping the beam divergence low. Kerbs (metallic plates around groups of apertures, attached to the downstream surface of the grids) are used to compensate for the beamlet–beamlet interaction and to point the beamlets in the right direction. A novel magnetic configuration is employed to compensate for the beamlet deflection caused by the electron suppression magnets in the extraction grid. A combination of long-range and short-range magnetic fields is used to reduce electron leakage between the grids and limit the transmitted electron power to below 800 kW.
Review of Scientific Instruments | 2010
M. J. Singh; H.P.L. de Esch
This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.
SECOND INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES | 2011
M. J. Singh; M. Bandyopadhyay; G. Bansal; A. Gahlaut; Jignesh Soni; Sunil Kumar; K. Pandya; K. G. Parmar; J. Sonara; Ratnakar Yadava; Amlan Chakraborty; W. Kraus; B. Heinemann; R. Riedl; S. Obermayer; C. Martens; P. Franzen; U. Fantz
The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5–1×1018/m3, at operational gas pressures ranging between 0.4–1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up...
New Journal of Physics | 2017
R.S. Hemsworth; D. Boilson; P. Blatchford; M. Dalla Palma; G. Chitarin; H.P.L. de Esch; F. Geli; M. Dremel; J. Graceffa; D. Marcuzzi; Gianluigi Serianni; Darshan Shah; M. J. Singh; M. Urbani; Pierluigi Zaccaria
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H− and D− remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
IEEE Transactions on Plasma Science | 2010
M. Bandyopadhyay; M. J. Singh; C. Rotti; A. Chakraborty; R.S. Hemsworth; B. Schunke
The 100-kV negative-hydrogen-ion-source-based diagnostic neutral beam (NB) (DNB) injector, which forms a part of the Indian (IN) procurement package for ITER, targets a delivery of ~18-20 A of neutral hydrogen-atom beam current into the ITER torus for charge exchange resonance spectroscopy diagnostics. Considering stripping losses, a ~70-A negative ion current is required to be extracted from the ion source, which leads to a production of 60 A of accelerated ion beam. Subsequent process of neutralization, electrostatic ion separation, and transport to the duct leads to a large separation between the points of generation of the ion beam to the point of delivery of the NB into the torus (~23 m). This forms one of the most important constraints for the transport of NBs to ITER. The requirements are not only for a stringent control over ion optics, the transport to electrostatic separator, minimum loss of beam due to intercepting elements, low reionization loss, and focusing to control interception losses but also for adequate compensation of residual magnetic fields to overcome magnetic field induced deflections also form important design issues for a reasonable transmission efficiency. Due to multiparameter dependence, it becomes necessary to assess the different scenarios using numerical codes. In the present case, the assessment has been carried out for the DNB using the beam-transport codes PDP, BTR, and the MCGF codes which are developed by the Russian Federation. An optimized configuration of the beamline has been arrived at on the basis of these code-enabled studies. These parameters are the following: listing of the vertical and horizontal focal lengths as 20.6 m, a spacing between ground grid and neutralizer of 1 m, and positioning of residual-ion dump at a distance of 0.75 m from the neutralizer exit. Further, optimizing the gas feed to the source and neutralizer leads to a final transmission of ~35% of the extracted beam power to the torus. This paper shall present the methodology, the issues concerned, and the final configuration which forms the basis for the present engineering.
Review of Scientific Instruments | 2016
D. Marcuzzi; P. Agostinetti; M. Dalla Palma; M. De Muri; G. Chitarin; G. Gambetta; N. Marconato; R. Pasqualotto; M. Pavei; N. Pilan; A. Rizzolo; G. Serianni; V. Toigo; L. Trevisan; M. Visentin; P. Zaccaria; M. Zaupa; D. Boilson; J. Graceffa; R. Hemsworth; C.H. Choi; M. Marti; K. Roux; M. J. Singh; A. Masiello; M. Fröschle; B. Heinemann; R. Nocentini; R. Riedl; H. Tobari
The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.
Review of Scientific Instruments | 2016
B. Schunke; D. Boilson; J. Chareyre; C.H. Choi; H. Decamps; A. El-Ouazzani; F. Geli; J. Graceffa; R. Hemsworth; M. Kushwah; K. Roux; D. Shah; M. J. Singh; L. Svensson; M. Urbani
The ITER baseline foresees 2 Heating Neutral Beams (HNBs) based on 1 MeV 40 A D(-) negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H(0) at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds-for the prototype route chosen-will soon be ready to start.
Review of Scientific Instruments | 2012
G. Bansal; S. Bhartiya; Kaushal Pandya; M. Bandyopadhyay; M. J. Singh; J. Soni; A. Gahlaut; K. G. Parmar; A. Chakraborty
Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.
Journal of Physics: Conference Series | 2010
Jashwant Sonara; K.G. Parmar; Jignesh Soni; M. Bandyopadhyay; M. J. Singh; Gourab Bansal; Kaushal Pandya; A. Chakraborty
The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly – RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low & high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.