Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. Wolff is active.

Publication


Featured researches published by M. J. Wolff.


Nature | 2008

Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument

John F. Mustard; Scott L. Murchie; Shannon Pelkey; B. L. Ehlmann; Ralph E. Milliken; John A. Grant; Jean-Pierre Bibring; F. Poulet; Jack B. Bishop; E. Z. Noe Dobrea; L. H. Roach; F. P. Seelos; Raymond E. Arvidson; Sandra Margot Wiseman; Robert O. Green; C. D. Hash; David Carl Humm; Erick R. Malaret; J. A. McGovern; Kimberly D. Seelos; Thomas E. Clancy; Roger N. Clark; D. J. Des Marais; Noam R. Izenberg; Amy T. Knudson; Yves Langevin; Terry Z. Martin; Patrick C. McGuire; Richard V. Morris; Mark S. Robinson

Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L’Eau, les Glaces et l’Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars’s history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.


Science | 2004

The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; C. d'Uston; Thanasis E. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; Joshua A. Grant; Ronald Greeley; John P. Grotzinger; Larry A. Haskin; K. E. Herkenhoff; S. F. Hviid; James Richard Johnson; G. Klingelhöfer; Andrew H. Knoll; Geoffrey A. Landis; Mark T. Lemmon; R. Li

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Science | 2004

Mineralogy at Meridiani Planum from the Mini-TES experiment on the opportunity rover

Philip R. Christensen; Michael Bruce Wyatt; Timothy D. Glotch; A. D. Rogers; Saadat Anwar; Raymond E. Arvidson; Joshua L. Bandfield; Diana L. Blaney; Charles John Budney; Wendy M. Calvin; A. Fallacaro; R. L. Fergason; Noel Gorelick; T. G. Graff; Victoria E. Hamilton; Alexander G. Hayes; James Richard Johnson; Amy T. Knudson; Harry Y. McSween; Greg L. Mehall; L. K. Mehall; Jeffrey Edward Moersch; Richard V. Morris; M. D. Smith; S. W. Squyres; Steven W. Ruff; M. J. Wolff

The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (∼20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.


Journal of Geophysical Research | 2000

An intercomparison of ground‐based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere

R. T. Clancy; Brad J. Sandor; M. J. Wolff; Philip R. Christensen; Michael D. Smith; John C. Pearl; Barney J. Conrath; R. J. Wilson

During the period October 1997 to September 1999 we obtained and analyzed over 100 millimeter-wave observations of Mars atmospheric CO line absorption for atmospheric temperature profiles. These measurements extend through one full Mars year (solar longitudes LS of 190° in 1997 to 180° in 1999) and coincide with atmospheric temperature profile and dust column measurements from the Thermal Emission Spectrometer (TES) experiment on board the Mars Global Surveyor (MGS) spacecraft. A comparison of Mars atmospheric temperatures retrieved by these distinct methods provides the first opportunity to place the long-term (1982–1999) millimeter retrievals of Mars atmospheric temperatures within the context of contemporaneous, spatially mapped spacecraft observations. Profile comparisons of 0–30 km altitude atmospheric temperatures retrieved with the two techniques agree typically to within the 5 K calibration accuracy of the millimeter observations. At the 0.5 mbar pressure level (∼25 km altitude) the 30°N/30°S average for TES infrared temperatures and the disk-averaged millimeter temperatures are also well correlated in their seasonal and dust-storm-related variations over the 1997–1999 period. This period includes the Noachis Terra regional dust storm, which led to very abrupt heating (∼15 K at 0.5 mbar) of the global Mars atmosphere at LS = 224° in 1997 [Christensen et al., 1998; Conrath et al., this issue; Smith et al., this issue]. Much colder (10–20 K) global atmospheric temperatures were observed during the 1997 versus 1977 perihelion periods (LS = 200°–330°), consistent with the much (2 to 8 times) lower global dust loading of the atmosphere during the 1997 perihelion dust storm season versus the Viking period of the 1977a,b storms. The 1998–1999 Mars atmosphere revealed by both the millimeter and TES observations is also 10–15 K colder than presented by the Viking climatology during the aphelion season (LS = 0°–180°, northern spring/summer) of Mars. We reassess the observational basis of the Viking dusty-warm climatology for this season to conclude that the global aphelion atmosphere of Mars is colder, less dusty, and cloudier than indicated by the established Viking climatology even for the Viking period. We also conclude that Mars atmospheric temperatures exhibit their most significant interannual variations during the perihelion dust storm season (10–20 K for LS = 200°–340°) and during the post-aphelion northern summer season (5–10 K for LS = 100°–200°).


The Astrophysical Journal | 2005

FIRST GLIMPSE RESULTS ON THE STELLAR STRUCTURE OF THE GALAXY

Robert A. Benjamin; E. Churchwell; B. L. Babler; Remy Indebetouw; Marilyn R. Meade; Barbara A. Whitney; Christer Watson; Mark G. Wolfire; M. J. Wolff; Richard Ignace; Thomas M. Bania; S. Bracker; Dan P Clemens; Laura Chomiuk; Martin Cohen; John M. Dickey; James M. Jackson; Henry A. Kobulnicky; E. P. Mercer; John S. Mathis; Susan Renee Stolovy; B. Uzpen

The GLIMPSE (Galactic Legacy Mid-Plane Survey Extraordinaire) Point Source Catalog of ~30 million mid-infrared sources toward the inner Galaxy, 10° ≤ |l| ≤ 65° and |b| ≤ 1°, was used to determine the distribution of stars in Galactic longitude, l, latitude, b, and apparent magnitude, m. The counts versus longitude can be approximated by the modified Bessel function N = N0(l/l0)K1(l/l0), where l0 is insensitive to limiting magnitude, band choice, and side of Galactic center: l0 = 17°-30° with a best-fit value in the 4.5 μm band of l0 = 24° ± 4°. Modeling the source distribution as an exponential disk yields a radial scale length of H* = 3.9 ± 0.6 kpc. There is a pronounced north-south asymmetry in source counts for |l| 30°, with ~25% more stars in the north. For l = 10°-30°, there is a strong enhancement of stars of m = 11.5-13.5 mag. A linear bar passing through the Galactic center with half-length Rbar = 4.4 ± 0.5 kpc, tilted by = 44° ± 10° to the Sun-Galactic center line, provides the simplest interpretation of these data. We examine the possibility that enhanced source counts at l = 26°-28°, 315-34°, and 306°-309° are related to Galactic spiral structure. Total source counts are depressed in regions where the counts of red objects (mK-m[8.0] > 3) peak. In these areas, the counts are reduced by extinction due to molecular gas, high diffuse backgrounds associated with star formation, or both.


Science | 2004

Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity

Mark T. Lemmon; M. J. Wolff; Michael D. Smith; R. T. Clancy; Donald J. Banfield; Geoffrey A. Landis; Amitabha Ghosh; Peter W. H. Smith; N. Spanovich; Barbara A. Whitney; P. L. Whelley; Ronald Greeley; Shane D. Thompson; James F. Bell; S. W. Squyres

A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 ± 0.62 kilometers. The dusts cross section weighted mean radius was 1.47 ± 0.21 micrometers (μm) at Gusev and 1.52 ± 0.18 μ at Meridiani. Comparison of visible optical depths with 9-μ optical depths shows a visible-to-infrared optical depth ratio of 2.0 ± 0.2 for comparison with previous monitoring of infrared optical depths.


Journal of Geophysical Research | 2006

Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills

Raymond E. Arvidson; S. W. Squyres; Robert C. Anderson; James F. Bell; Diana L. Blaney; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; P. A. de Souza; C. d'Uston; T. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; J. A. Grant; Ronald Greeley; John P. Grotzinger; Edward A. Guinness; Brian C. Hahn; Larry A. Haskin; K. E. Herkenhoff; Joel A. Hurowitz; S. F. Hviid

Spirit landed on the floor of Gusev Crater and conducted initial operations on soil-covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind-blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of monolayers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggests that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.


Journal of Geophysical Research | 2006

Nature and origin of the hematite‐bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets

Raymond E. Arvidson; F. Poulet; Richard V. Morris; Jean-Pierre Bibring; James F. Bell; S. W. Squyres; Philip R. Christensen; G. Bellucci; B. Gondet; B. L. Ehlmann; William H. Farrand; R. L. Fergason; M. Golombek; J. L. Griffes; John P. Grotzinger; Edward A. Guinness; K. E. Herkenhoff; James Richard Johnson; G. Klingelhöfer; Yves Langevin; D. W. Ming; Kimberly D. Seelos; R. Sullivan; J. Ward; Sandra Margot Wiseman; M. J. Wolff

The ~5 km of traverses and observations completed by the Opportunity rover from Endurance crater to the Fruitbasket outcrop show that the Meridiani plains consist of sulfate-rich sedimentary rocks that are largely covered by poorly-sorted basaltic aeolian sands and a lag of granule-sized hematitic concretions. Orbital reflectance spectra obtained by Mars Express OMEGA over this region are dominated by pyroxene, plagioclase feldspar, crystalline hematite (i.e., concretions), and nano-phase iron oxide dust signatures, consistent with Pancam and Mini-TES observations. Mossbauer Spectrometer observations indicate more olivine than observed with the other instruments, consistent with preferential optical obscuration of olivine features in mixtures with pyroxene and dust. Orbital data covering bright plains located several kilometers to the south of the landing site expose a smaller areal abundance of hematite, more dust, and a larger areal extent of outcrop compared to plains proximal to the landing site. Low-albedo, low-thermal-inertia, windswept plains located several hundred kilometers to the south of the landing site are predicted from OMEGA data to have more hematite and fine-grained olivine grains exposed as compared to the landing site. Low calcium pyroxene dominates spectral signatures from the cratered highlands to the south of Opportunity. A regional-scale model is presented for the formation of the plains explored by Opportunity, based on a rising ground water table late in the Noachian Era that trapped and altered local materials and aeolian basaltic sands. Cessation of this aqueous process led to dominance of aeolian processes and formation of the current configuration of the plains.


Science | 2014

Ancient Aqueous Environments at Endeavour Crater, Mars

Raymond E. Arvidson; Steven W. Squyres; James F. Bell; Jeffrey G. Catalano; B. C. Clark; Larry S. Crumpler; P. A. de Souza; Alberto G. Fairén; William H. Farrand; V. K. Fox; R. Gellert; Anupam Ghosh; M. P. Golombek; John P. Grotzinger; Edward A. Guinness; K. E. Herkenhoff; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; J. M. Moore; Richard V. Morris; Scott L. Murchie; T. J. Parker; Gale Paulsen; J. W. Rice; Steven W. Ruff; M. D. Smith

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.


Science | 2004

Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum

James F. Bell; S. W. Squyres; Raymond E. Arvidson; H. M. Arneson; D. S. Bass; Wendy M. Calvin; William H. Farrand; W. Goetz; M. P. Golombek; Ronald Greeley; John P. Grotzinger; Edward A. Guinness; Alexander G. Hayes; M. Y. H. Hubbard; K. E. Herkenhoff; M. J. Johnson; James Richard Johnson; Jonathan Joseph; K. M. Kinch; Mark T. Lemmon; R. Li; M. B. Madsen; J. N. Maki; M. C. Malin; E. McCartney; Scott M. McLennan; Harry Y. McSween; D. W. Ming; Richard V. Morris; E. Z. Noe Dobrea

Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron–rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.

Collaboration


Dive into the M. J. Wolff's collaboration.

Top Co-Authors

Avatar

R. Todd Clancy

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. D. Smith

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. P. Seelos

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge