M. Jaquet
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Jaquet.
Astronomy and Astrophysics | 2016
A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier
Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.
Astronomy and Astrophysics | 2016
A. Vigan; M. Bonnefoy; C. Ginski; H. Beust; R. Galicher; Markus Janson; J.-L. Baudino; Esther Buenzli; J. Hagelberg; Valentina D'Orazi; S. Desidera; A.-L. Maire; R. Gratton; Jean-François Sauvage; G. Chauvin; C. Thalmann; L. Malo; G. Salter; A. Zurlo; J. Antichi; Andrea Baruffolo; Pierre Baudoz; P. Blanchard; A. Boccaletti; J.-L. Beuzit; M. Carle; R. U. Claudi; A. Costille; A. Delboulbé; Kjetil Dohlen
GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.
Proceedings of SPIE | 2012
Hajime Sugai; Hiroshi Karoji; Naruhisa Takato; Naoyuki Tamura; Atsushi Shimono; Youichi Ohyama; Akitoshi Ueda; Hung-Hsu Ling; Marcio Vital de Arruda; Robert H. Barkhouser; C. L. Bennett; Steve Bickerton; David F. Braun; Robin J. Bruno; Michael A. Carr; João Batista de Carvalho Oliveira; Yin-Chang Chang; Hsin-Yo Chen; Richard G. Dekany; Tania P. Dominici; Richard S. Ellis; Charles D. Fisher; James E. Gunn; Timothy M. Heckman; Paul T. P. Ho; Yen-Shan Hu; M. Jaquet; Jennifer Karr; Masahiko Kimura; Olivier Le Fevre
The Prime Focus Spectrograph (PFS) is a new multi-fiber spectrograph on Subaru telescope. PFS will cover around 1.4 degree diameter field with ~2400 fibers. To ensure precise positioning of the fibers, a metrology camera is designed to provide the fiber position information within 5 {\mu}m error. The final positioning accuracy of PFS is targeted to be better than 10 {\mu}m. The metrology camera will locate at the Cassegrain focus of Subaru telescope to cover the whole focal plane. The PFS metrology camera will also serve for the existing multi-fiber infrared spectrograph FMOS.The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a widefield metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 μm to 1.3 μm will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, and JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru.
Journal of Astronomical Telescopes, Instruments, and Systems | 2015
Hajime Sugai; Naoyuki Tamura; Hiroshi Karoji; Atsushi Shimono; Naruhisa Takato; Masahiko Kimura; Youichi Ohyama; Akitoshi Ueda; Hrand Aghazarian; Marcio Vital de Arruda; Robert H. Barkhouser; C. L. Bennett; Steve Bickerton; Alexandre Bozier; David F. Braun; Khanh Bui; Christopher M. Capocasale; Michael A. Carr; Bruno Castilho; Yin-Chang Chang; Hsin-Yo Chen; Richard C. Y. Chou; Olivia R. Dawson; Richard G. Dekany; Eric M. Ek; Richard S. Ellis; Robin J. English; Didier Ferrand; Décio Ferreira; Charles D. Fisher
Abstract. The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.
Monthly Notices of the Royal Astronomical Society | 2018
R. Ligi; A. Vigan; R. Gratton; J. de Boer; M. Benisty; A. Boccaletti; Sascha P. Quanz; Michael R. Meyer; C. Ginski; E. Sissa; C. Gry; T. Henning; J.-L. Beuzit; Beth A. Biller; M. Bonnefoy; G. Chauvin; Anthony Cheetham; M. Cudel; P. Delorme; S. Desidera; Markus Feldt; R. Galicher; J. H. Girard; Markus Janson; M. Kasper; T. Kopytova; A.-M. Lagrange; M. Langlois; H. LeCoroller; A. L. Maire
We present observations of the Herbig Ae star HD169142 with VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) (K1K2 and H2H3 bands) and the Integral Field Spectrograph (IFS) (Y , J and H bands). We detect several bright blobs at ∼180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the H and K S bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at ∼93 mas separation and position angle of 355 • , at a location very close to previous detections. It appears point-like in the Y J and K bands but is more extended in the H band. We also marginally detect an inner ring in the RDI data at ∼100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure.
Proceedings of SPIE | 2016
Naoyuki Tamura; Naruhisa Takato; Atsushi Shimono; Yuki Moritani; Kiyoto Yabe; Yuki Ishizuka; Akitoshi Ueda; Yukiko Kamata; Hrand Aghazarian; S. Arnouts; Gabriel Barban; Robert H. Barkhouser; Renato C. Borges; David F. Braun; Michael A. Carr; Pierre-Yves Chabaud; Yin-Chang Chang; Hsin-Yo Chen; Masashi Chiba; Richard C. Y. Chou; You-Hua Chu; Judith G. Cohen; Rodrigo P. de Almeida; Antonio Cesar de Oliveira; Ligia Souza de Oliveira; Richard G. Dekany; Kjetil Dohlen; Jesulino Bispo dos Santos; Leandro H. dos Santos; Richard S. Ellis
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6 - 2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.
Astronomy and Astrophysics | 2016
A. Vigan; M. N’Diaye; Kjetil Dohlen; J.-L. Beuzit; A. Costille; A. Caillat; Andrea Baruffolo; P. Blanchard; M. Carle; Marc Ferrari; T. Fusco; L. Gluck; Emmanuel Hugot; M. Jaquet; M. Langlois; D. Le Mignant; M. Llored; Fabrice Madec; David Mouillet; A. Origné; Pascal Puget; Bernardo Salasnich; Jean-François Sauvage
Spectral characterization of young, giant exoplanets detected by direct imaging is one of the tasks of the new generation of high-contrast imagers. For this purpose, the VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS). The performance of this mode is intrinsically limited by the use of a non-optimal coronagraph, but in a previous work we demonstrated that it could be significantly improved at small inner-working angles using the stop-less Lyot coronagraph (SLLC). We now present the development, testing, and validation of the first SLLC prototype for VLT/SPHERE. Based on the transmission profile previously proposed, the prototype was manufactured using microdots technology and was installed inside the instrument in 2014. The transmission measurements agree well with the specifications, except in the very low transmissions (<5% in amplitude). The performance of the SLLC is tested in both imaging and spectroscopy using data acquired on the internal source. In imaging, we obtain a raw contrast gain of a factor 10 at 0.3′′ and 5 at 0.5′′ with the SLLC. Using data acquired with a focal-plane mask, we also demonstrate that no Lyot stop is required to reach the full performance, which validates the SLLC concept. Comparison with a realistic simulation model shows that we are currently limited by the internal phase aberrations of SPHERE. In spectroscopy, we obtain a gain of ~1 mag in a limited range of angular separations. Simulations show that although the main limitation comes from phase errors, the performance in the non-SLLC case is very close to the ultimate limit of the LSS mode. Finally, we obtain the very first on-sky data with the SLLC, which appear extremely promising for the future scientific exploitation of an apodized LSS mode in SPHERE.
Proceedings of SPIE | 2010
Kjetil Dohlen; M. Carle; Fabrice Madec; M. Langlois; David Le Mignant; Michel Saisse; A. Vigan; Gilles Arthaud; Rudy Barette; Jean-Antoine Benedetti; Jean-Claude Blanc; P. Blanchard; William Bon; Louis Castinel; Christophe Fabron; Lucien Hill; M. Jaquet; Philippe Laurent; M. Llored; Nataly Manzone; Silvio P. Mazzanti; Jeanne Melkonian; Gabriel Moreaux; Claire Moutou; A. Origné; Markus Feldt; Vianak Naranjo; Ralf-Rainer Rohloff; Jean-Luc Beuzit; L. Gluck
SPHERE is a planet hunting instrument for the VLT 8m telescope in Chile whose prime objective is the discovery and characterization of young Jupiter-sized planets outside of the solar system. It is a complex instrument, consisting of an extreme Adaptive Optics System (SAXO), various coronagraphs, an infrared differential imaging camera (IRDIS), an infrared integral field spectrograph (IFS) and a visible differential polarimeter (ZIMPOL). The performance of the IRDIS camera is directly related to various wavefront error budgets of the instrument, in particular the differential aberrations occurring after separation of the two image beams. We report on the ongoing integration and testing activities in terms of optical, mechanical, and cryo-vacuum instrument parts. In particular, we show results of component level tests of the optics and indicate expected overall performance in comparison with design-level budgets. We also describe the plans for instrumental performance and science testing of the instrument, foreseen to be conducted during coming months.
Proceedings of SPIE | 2014
Hajime Sugai; Naoyuki Tamura; Hiroshi Karoji; Atsushi Shimono; Naruhisa Takato; Masahiko Kimura; Youichi Ohyama; Akitoshi Ueda; Hrand Aghazarian; Marcio Vital de Arruda; Robert H. Barkhouser; C. L. Bennett; Steve Bickerton; Alexandre Bozier; David F. Braun; Khanh Bui; Christopher M. Capocasale; Michael A. Carr; Bruno Castilho; Yin-Chang Chang; Hsin-Yo Chen; Richard C. Y. Chou; Olivia R. Dawson; Richard G. Dekany; Eric M. Ek; Richard S. Ellis; Robin J. English; Didier Ferrand; Décio Ferreira; Charles D. Fisher
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam (HSC) works on the imaging part. HSC’s excellent image qualities have proven the high quality of the Wide Field Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design Review and is now in a phase of subsystem Critical Design Reviews and construction. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip. The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After successful production of mechanical and optical samples, mass production is now complete. Following careful investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards, mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to work as predicted, and spectrographs have been designed to avoid small possible residual resonances.
Proceedings of SPIE | 2012
S. Vives; David Le Mignant; Fabrice Madec; M. Jaquet; Eric Prieto; Laurent Martin; Olivier Le Fevre; James E. Gunn; Michael A. Carr; Stephen A. Smee; Robert H. Barkhouser; Hajime Sugai; Naoyuki Tamura
We describe the conceptual design of the spectrograph opto-mechanical concept for the SuMIRe Prime Focus Spectrograph (PFS) being developed for the SUBARU telescope. The SuMIRe PFS will consist of four identical spectrographs, each receiving 600 fibers from a 2400 fiber robotic positioner at the prime focus. Each spectrograph will have three channels covering in total, a wavelength range from 380 nm to 1300 nm. The requirements for the instrument are summarized in Section 1. We present the optical design and the optical performance and analysis in Section 2. Section 3 introduces the mechanical design, its requirements and the proposed concepts. Finally, the AIT phases for the Spectrograph System are described in Section 5.