Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. John Chapman is active.

Publication


Featured researches published by M. John Chapman.


European Heart Journal | 2011

ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS)

Alberico L. Catapano; Zeljko Reiner; Guy De Backer; Ian Graham; Marja-Riitta Taskinen; Olov Wiklund; Stefan Agewall; Eduardo Alegría; M. John Chapman; Paul N. Durrington; Serap Erdine; Julian Halcox; Richard Hobbs; John Kjekshus; Pasquale Perrone Filardi; Gabriele Riccardi; Robert F. Storey; David R. Wood; Philippe Kolh

Cardiovascular disease (CVD) due to atherosclerosis of the arterial vessel wall and to thrombosis is the foremost cause of premature mortality and of disability-adjusted life years (DALYs) in Europe, and is also increasingly common in developing countries.1 In the European Union, the economic cost of CVD represents annually E192 billion1 in direct and indirect healthcare costs. The main clinical entities are coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease (PAD). The causes of these CVDs are multifactorial. Some of these factors relate to lifestyles, such as tobacco smoking, lack of physical activity, and dietary habits, and are thus modifiable. Other risk factors are also modifiable, such as elevated blood pressure, type 2 diabetes, and dyslipidaemias, or non-modifiable, such as age and male gender. These guidelines deal with the management of dyslipidaemias as an essential and integral part of CVD prevention. Prevention and treatment of dyslipidaemias should always be considered within the broader framework of CVD prevention, which is addressed in guidelines of the Joint European Societies’ Task forces on CVD prevention in clinical practice.2 – 5 The latest version of these guidelines was published in 20075; an update will become available in 2012. These Joint ESC/European Atherosclerosis Society (EAS) guidelines on the management of dyslipidaemias are complementary to the guidelines on CVD prevention in clinical practice and address not only physicians [e.g. general practitioners (GPs) and cardiologists] interested in CVD prevention, but also specialists from lipid clinics or metabolic units who are dealing with dyslipidaemias that are more difficult to classify and treat.


European Heart Journal | 2010

Lipoprotein(a) as a cardiovascular risk factor: current status

Børge G. Nordestgaard; M. John Chapman; Kausik K. Ray; Jan Borén; Felicita Andreotti; Gerald F. Watts; Henry N. Ginsberg; Pierre Amarenco; Alberico L. Catapano; Olivier S. Descamps; Edward A. Fisher; Petri T. Kovanen; Jan Albert Kuivenhoven; Philippe Lesnik; Luis Masana; Zeljko Reiner; Marja-Riitta Taskinen; Lale Tokgozoglu; Anne Tybjærg-Hansen

Aims The aims of the study were, first, to critically evaluate lipoprotein(a) [Lp(a)] as a cardiovascular risk factor and, second, to advise on screening for elevated plasma Lp(a), on desirable levels, and on therapeutic strategies. Methods and results The robust and specific association between elevated Lp(a) levels and increased cardiovascular disease (CVD)/coronary heart disease (CHD) risk, together with recent genetic findings, indicates that elevated Lp(a), like elevated LDL-cholesterol, is causally related to premature CVD/CHD. The association is continuous without a threshold or dependence on LDL- or non-HDL-cholesterol levels. Mechanistically, elevated Lp(a) levels may either induce a prothrombotic/anti-fibrinolytic effect as apolipoprotein(a) resembles both plasminogen and plasmin but has no fibrinolytic activity, or may accelerate atherosclerosis because, like LDL, the Lp(a) particle is cholesterol-rich, or both. We advise that Lp(a) be measured once, using an isoform-insensitive assay, in subjects at intermediate or high CVD/CHD risk with premature CVD, familial hypercholesterolaemia, a family history of premature CVD and/or elevated Lp(a), recurrent CVD despite statin treatment, ≥3% 10-year risk of fatal CVD according to European guidelines, and/or ≥10% 10-year risk of fatal + non-fatal CHD according to US guidelines. As a secondary priority after LDL-cholesterol reduction, we recommend a desirable level for Lp(a) <80th percentile (less than ∼50 mg/dL). Treatment should primarily be niacin 1–3 g/day, as a meta-analysis of randomized, controlled intervention trials demonstrates reduced CVD by niacin treatment. In extreme cases, LDL-apheresis is efficacious in removing Lp(a). Conclusion We recommend screening for elevated Lp(a) in those at intermediate or high CVD/CHD risk, a desirable level <50 mg/dL as a function of global cardiovascular risk, and use of niacin for Lp(a) and CVD/CHD risk reduction.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Cholesteryl Ester Transfer Protein A Novel Target for Raising HDL and Inhibiting Atherosclerosis

Philip J. Barter; H. Bryan Brewer; M. John Chapman; Charles H. Hennekens; Daniel J. Rader; Alan R. Tall

Abstract—Cholesteryl ester transfer protein (CETP) promotes the transfer of cholesteryl esters from antiatherogenic HDLs to proatherogenic apolipoprotein B (apoB)–containing lipoproteins, including VLDLs, VLDL remnants, IDLs, and LDLs. A deficiency of CETP is associated with increased HDL levels and decreased LDL levels, a profile that is typically antiatherogenic. Studies in rabbits, a species with naturally high levels of CETP, support the therapeutic potential of CETP inhibition as an approach to retarding atherogenesis. Studies in mice, a species that lacks CETP activity, have provided mixed results. Human subjects with heterozygous CETP deficiency and an HDL cholesterol level >60 mg/dL have a reduced risk of coronary heart disease. Evidence that atherosclerosis may be increased in CETP-deficient subjects whose HDL levels are not increased is difficult to interpret and may reflect confounding or bias. Small-molecule inhibitors of CETP have now been tested in human subjects and shown to increase the concentration of HDL cholesterol while decreasing that of LDL cholesterol and apoB. Thus, it seems important and timely to test the hypothesis in randomized trials of humans that pharmacological inhibition of CETP retards the development of atherosclerosis.


European Heart Journal | 2011

Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

M. John Chapman; Henry N. Ginsberg; Pierre Amarenco; Felicita Andreotti; Jan Borén; Alberico L. Catapano; Olivier S. Descamps; Edward A. Fisher; Petri T. Kovanen; Jan Albert Kuivenhoven; Philippe Lesnik; Luis Masana; Børge G. Nordestgaard; Kausik K. Ray; Zeljko Reiner; Marja-Riitta Taskinen; Lale Tokgozoglu; Anne Tybjærg-Hansen; Gerald F. Watts

Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal.


European Heart Journal | 2017

2016 ESC/EAS Guidelines for the Management of Dyslipidaemias

Alberico L. Catapano; Ian Graham; Guy De Backer; Olov Wiklund; M. John Chapman; Heinz Drexel; Arno W. Hoes; Catriona Jennings; Ulf Landmesser; Terje R. Pedersen; Željko Reiner; Gabriele Riccardi; Marja-Riita Taskinen; Lale Tokgozoglu; W. M. Monique Verschuren; Charalambos Vlachopoulos; David Wood; Jose Luis Zamorano

The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS)  Developed with the special contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR)  ABI : ankle-brachial index


Pharmacological Reviews | 2006

Functionally Defective High-Density Lipoprotein: A New Therapeutic Target at the Crossroads of Dyslipidemia, Inflammation, and Atherosclerosis

Anatol Kontush; M. John Chapman

High-density lipoproteins (HDL) possess key atheroprotective biological properties, including cellular cholesterol efflux capacity, and anti-oxidative and anti-inflammatory activities. Plasma HDL particles are highly heterogeneous in physicochemical properties, metabolism, and biological activity. Within the circulating HDL particle population, small, dense HDL particles display elevated cellular cholesterol efflux capacity, afford potent protection of atherogenic low-density lipoprotein against oxidative stress and attenuate inflammation. The antiatherogenic properties of HDL can, however be compromised in metabolic diseases associated with accelerated atherosclerosis. Indeed, metabolic syndrome and type 2 diabetes are characterized not only by elevated cardiovascular risk and by low HDL-cholesterol (HDL-C) levels but also by defective HDL function. Functional HDL deficiency is intimately associated with alterations in intravascular HDL metabolism and structure. Indeed, formation of HDL particles with attenuated antiatherogenic activity is mechanistically related to core lipid enrichment in triglycerides and cholesteryl ester depletion, altered apolipoprotein A-I (apoA-I) conformation, replacement of apoA-I by serum amyloid A, and covalent modification of HDL protein components by oxidation and glycation. Deficient HDL function and subnormal HDL-C levels may act synergistically to accelerate atherosclerosis in metabolic disease. Therapeutic normalization of attenuated antiatherogenic HDL function in terms of both particle number and quality of HDL particles is the target of innovative pharmacological approaches to HDL raising, including inhibition of cholesteryl ester transfer protein, enhanced lipidation of apoA-I with nicotinic acid and infusion of reconstituted HDL or apoA-I mimetics. A preferential increase in circulating concentrations of HDL particles possessing normalized antiatherogenic activity is therefore a promising therapeutic strategy for the treatment of common metabolic diseases featuring dyslipidemia, inflammation, and premature atherosclerosis.


European Heart Journal | 2015

Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management

Erik S. G. Stroes; Paul D. Thompson; Alberto Corsini; Georgirene D. Vladutiu; Frederick J. Raal; Kausik K. Ray; Michael Roden; Evan A. Stein; Lale Tokgozoglu; Børge G. Nordestgaard; Eric Bruckert; Guy De Backer; Ronald M. Krauss; Ulrich Laufs; Raul D. Santos; Robert A. Hegele; G. Kees Hovingh; Lawrence A. Leiter; François Mach; Winfried März; Connie B. Newman; Olov Wiklund; Terry A. Jacobson; Alberico L. Catapano; M. John Chapman; Henry N. Ginsberg

Statin-associated muscle symptoms (SAMS) are one of the principal reasons for statin non-adherence and/or discontinuation, contributing to adverse cardiovascular outcomes. This European Atherosclerosis Society (EAS) Consensus Panel overviews current understanding of the pathophysiology of statin-associated myopathy, and provides guidance for diagnosis and management of SAMS. Statin-associated myopathy, with significant elevation of serum creatine kinase (CK), is a rare but serious side effect of statins, affecting 1 per 1000 to 1 per 10 000 people on standard statin doses. Statin-associated muscle symptoms cover a broader range of clinical presentations, usually with normal or minimally elevated CK levels, with a prevalence of 7–29% in registries and observational studies. Preclinical studies show that statins decrease mitochondrial function, attenuate energy production, and alter muscle protein degradation, thereby providing a potential link between statins and muscle symptoms; controlled mechanistic and genetic studies in humans are necessary to further understanding. The Panel proposes to identify SAMS by symptoms typical of statin myalgia (i.e. muscle pain or aching) and their temporal association with discontinuation and response to repetitive statin re-challenge. In people with SAMS, the Panel recommends the use of a maximally tolerated statin dose combined with non-statin lipid-lowering therapies to attain recommended low-density lipoprotein cholesterol targets. The Panel recommends a structured work-up to identify individuals with clinically relevant SAMS generally to at least three different statins, so that they can be offered therapeutic regimens to satisfactorily address their cardiovascular risk. Further research into the underlying pathophysiological mechanisms may offer future therapeutic potential.


Journal of Internal Medicine | 2006

Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel.

Philip J. Barter; Christie M. Ballantyne; Rafael Carmena; M. Castro Cabezas; M. John Chapman; Patrick Couture; J. de Graaf; Paul N. Durrington; Ole Faergeman; J. Frohlich; Curt D. Furberg; C. Gagne; S. M. Haffner; Steve E. Humphries; I. Jungner; Ronald M. Krauss; Peter O. Kwiterovich; Santica M. Marcovina; Christopher J. Packard; Thomas A. Pearson; K. Srinath Reddy; Robert S. Rosenson; N. Sarrafzadegan; Allan D. Sniderman; Anton F. H. Stalenhoef; Evan A. Stein; P.J. Talmud; Andrew Tonkin; Göran Walldius; K. M S Williams

There is abundant evidence that the risk of atherosclerotic vascular disease is directly related to plasma cholesterol levels. Accordingly, all of the national and transnational screening and therapeutic guidelines are based on total or LDL cholesterol. This presumes that cholesterol is the most important lipoprotein‐related proatherogenic risk variable. On the contrary, risk appears to be more directly related to the number of circulating atherogenic particles that contact and enter the arterial wall than to the measured concentration of cholesterol in these lipoprotein fractions. Each of the atherogenic lipoprotein particles contains a single molecule of apolipoprotein (apo) B and therefore the concentration of apo B provides a direct measure of the number of circulating atherogenic lipoproteins. Evidence from fundamental, epidemiological and clinical trial studies indicates that apo B is superior to any of the cholesterol indices to recognize those at increased risk of vascular disease and to judge the adequacy of lipid‐lowering therapy. On the basis of this evidence, we believe that apo B should be included in all guidelines as an indicator of cardiovascular risk. In addition, the present target adopted by the Canadian guideline groups of an apo B <90 mg dL−1 in high‐risk patients should be reassessed in the light of the new clinical trial results and a new ultra‐low target of <80 mg dL−1 be considered. The evidence also indicates that the apo B/apo A‐I ratio is superior to any of the conventional cholesterol ratios in patients without symptomatic vascular disease or diabetes to evaluate the lipoprotein‐related risk of vascular disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Small, Dense HDL Particles Exert Potent Protection of Atherogenic LDL Against Oxidative Stress

Anatol Kontush; M. John Chapman

Objectives—The relationship of the structural and functional heterogeneity of HDL particles to protection of LDL against oxidative stress is indeterminate. Methods and Results—HDL subfractions of defined physicochemical properties were isolated by density gradient ultracentrifugation from normolipidemic human serum (n=8), and their capacity to protect LDL from oxidation was evaluated. Under mild oxidative stress induced by AAPH or Cu(II), HDL subfractions (at equal cholesterol or protein concentration or equal particle number) significantly decreased LDL oxidation rate (−20% to −85%) in the propagation phase (234 nm), which was prolonged by up to 82% with decreased maximal diene formation. Antioxidative activity of HDL subfractions increased with increment in density, as follows: HDL2b<HDL2a<HDL3a<HDL3b<HDL3c (confirmed by thiobarbituric acid–reactive substance content and LDL electrophoretic mobility). Concordantly, antioxidative activity of small HDL prepared by FPLC was significantly higher (+56%) than that of large HDL. Antioxidative action of HDL subfractions was primarily associated with inactivation of LDL lipid hydroperoxides. The potent protective activity of small HDL could not be accounted for exclusively by enzymatic activities (PON1, platelet-activating factor acetylhydrolase, and lecithin-cholesterol acyltransferase). Conclusions—Small, dense HDL exhibit potent antioxidant activity, which may arise from synergy in inactivation of oxidized LDL lipids by enzymatic and nonenzymatic mechanisms, in part reflecting distinct intrinsic physicochemical properties.


Clinical Chemistry | 2011

HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic Cardiovascular Events

Robert S. Rosenson; H. Bryan Brewer; M. John Chapman; Sergio Fazio; M. Mahmood Hussain; Anatol Kontush; Ronald M. Krauss; James D. Otvos; Alan T. Remaley; Ernst J. Schaefer

BACKGROUND A growing body of evidence from epidemiological data, animal studies, and clinical trials supports HDL as the next target to reduce residual cardiovascular risk in statin-treated, high-risk patients. For more than 3 decades, HDL cholesterol has been employed as the principal clinical measure of HDL and cardiovascular risk associated with low HDL-cholesterol concentrations. The physicochemical and functional heterogeneity of HDL present important challenges to investigators in the cardiovascular field who are seeking to identify more effective laboratory and clinical methods to develop a measurement method to quantify HDL that has predictive value in assessing cardiovascular risk. CONTENT In this report, we critically evaluate the diverse physical and chemical methods that have been employed to characterize plasma HDL. To facilitate future characterization of HDL subfractions, we propose the development of a new nomenclature based on physical properties for the subfractions of HDL that includes very large HDL particles (VL-HDL), large HDL particles (L-HDL), medium HDL particles (M-HDL), small HDL particles (S-HDL), and very-small HDL particles (VS-HDL). This nomenclature also includes an entry for the pre-β-1 HDL subclass that participates in macrophage cholesterol efflux. SUMMARY We anticipate that adoption of a uniform nomenclature system for HDL subfractions that integrates terminology from several methods will enhance our ability not only to compare findings with different approaches for HDL fractionation, but also to assess the clinical effects of different agents that modulate HDL particle structure, metabolism, and function, and in turn, cardiovascular risk prediction within these HDL subfractions.

Collaboration


Dive into the M. John Chapman's collaboration.

Top Co-Authors

Avatar

Anatol Kontush

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilfried Le Goff

Pierre-and-Marie-Curie University

View shared research outputs
Top Co-Authors

Avatar

Olov Wiklund

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Borén

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Raimund Erbel

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip J. Barter

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge