Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Johnston-Hollitt is active.

Publication


Featured researches published by M. Johnston-Hollitt.


Publications of the Astronomical Society of Australia | 2013

The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

S. J. Tingay; R. Goeke; Judd D. Bowman; D. Emrich; S. M. Ord; D. A. Mitchell; M. F. Morales; T. Booler; B. Crosse; R. B. Wayth; C. J. Lonsdale; S. E. Tremblay; D. Pallot; T. Colegate; Andreas Wicenec; N. Kudryavtseva; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; S. Burns; John D. Bunton; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; L. deSouza; B. M. Gaensler; L. J. Greenhill; Peter Hall; B. J. Hazelton

The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.


Publications of the Astronomical Society of Australia | 2011

EMU: Evolutionary Map of the Universe

R. P. Norris; Andrew M. Hopkins; J. Afonso; Steven Brown; James J. Condon; Loretta Dunne; Ilana J. Feain; R. Hollow; M. J. Jarvis; M. Johnston-Hollitt; E. Lenc; Enno Middelberg; P. Padovani; I. Prandoni; Lawrence Rudnick; N. Seymour; Grazia Umana; H. Andernach; D. M. Alexander; P. N. Appleton; David Bacon; Julie Banfield; W. Becker; Michael J. I. Brown; P. Ciliegi; C. A. Jackson; Stephen Anthony Eales; A. C. Edge; B. M. Gaensler; G. Giovannini

EMU is a wide-field radio continuum survey planned for the new Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The primary goal of EMU is to make a deep (rms ~10 μJy/beam) radio continuum survey of the entire Southern sky at 1.3 GHz, extending as far North as +30° declination, with a resolution of 10 arcsec. EMU is expected to detect and catalogue about 70 million galaxies, including typical star-forming galaxies up to z ~ 1, powerful starbursts to even greater redshifts, and active galactic nuclei to the edge of the visible Universe. It will undoubtedly discover new classes of object. This paper defines the science goals and parameters of the survey, and describes the development of techniques necessary to maximise the science return from EMU.


Publications of the Astronomical Society of Australia | 2013

Science with the Murchison Widefield Array

Judd D. Bowman; Iver H. Cairns; David L. Kaplan; Tara Murphy; Divya Oberoi; Lister Staveley-Smith; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; Shea Brown; John D. Bunton; Adam J. Burgasser; R. J. Cappallo; Shami Chatterjee; B. E. Corey; Anthea J. Coster; Avinash A. Deshpande; L. deSouza; D. Emrich; Philip J. Erickson; R. Goeke; B. M. Gaensler; L. J. Greenhill; L. Harvey-Smith; B. J. Hazelton; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; J. Kasper

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.


Monthly Notices of the Royal Astronomical Society | 2014

wsclean: an implementation of a fast, generic wide-field imager for radio astronomy

A. R. Offringa; B. McKinley; Natasha Hurley-Walker; F. Briggs; R. B. Wayth; David L. Kaplan; M. E. Bell; L. Feng; A. R. Neben; J. D. Hughes; Jonghwan Rhee; Tara Murphy; N. D. R. Bhat; G. Bernardi; Judd D. Bowman; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; A. Ewall-Wice; B. M. Gaensler; R. Goeke; L. J. Greenhill; B. J. Hazelton; L. Hindson; M. Johnston-Hollitt; Daniel C. Jacobs; J. Kasper; E. Kratzenberg; E. Lenc

Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASAs w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.


Astronomy and Astrophysics | 2012

An improved map of the galactic Faraday sky

Niels Oppermann; H. Junklewitz; G. Robbers; M. R. Bell; T. A. Enßlin; A. Bonafede; R. Braun; Jo-Anne Brown; T. E. Clarke; Ilana J. Feain; B. M. Gaensler; A. Hammond; L. Harvey-Smith; George Heald; M. Johnston-Hollitt; U. Klein; Philipp P. Kronberg; Shude Mao; N. M. McClure-Griffiths; S. P. O’Sullivan; Luke Pratley; Timothy Robishaw; Subhashis Roy; D. H. F. M. Schnitzeler; C. Sotomayor-Beltran; J. Stevens; J. M. Stil; C. Sunstrum; A. Tanna; A. R. Taylor

We aim to summarize the current state of knowledge regarding Galactic Faraday rotation in an all-sky map of the Galactic Faraday depth. For this we have assembled the most extensive catalog of Faraday rotation data of compact extragalactic polarized radio sources to date. In the map-making procedure we used a recently developed algorithm that reconstructs the map and the power spectrum of a statistically isotropic and homogeneous field while taking into account uncertainties in the noise statistics. This procedure is able to identify some rotation angles that are offset by an integer multiple of π. The resulting map can be seen as an improved version of earlier such maps and is made publicly available, along with a map of its uncertainty. For the angular power spectrum we find a power law behavior C� ∝ � −2.17 for a Faraday sky where an overall variance profile as a function of Galactic latitude has been removed, in agreement with earlier work. We show that this is in accordance with a 3D Fourier power spectrum P(k) ∝ k −2.17 of the underlying


Monthly Notices of the Royal Astronomical Society | 2017

GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey – I. A low-frequency extragalactic catalogue

Natasha Hurley-Walker; J. R. Callingham; Paul Hancock; Thomas M. O. Franzen; L. Hindson; A. D. Kapińska; J. Morgan; A. R. Offringa; R. B. Wayth; C. Wu; Q. Zheng; Tara Murphy; M. E. Bell; K. S. Dwarakanath; Bi-Qing For; B. M. Gaensler; M. Johnston-Hollitt; E. Lenc; P. Procopio; Lister Staveley-Smith; Ron D. Ekers; Judd D. Bowman; F. Briggs; R. J. Cappallo; Avinash A. Deshpande; L. J. Greenhill; Brynah J. Hazelton; David L. Kaplan; Colin J. Lonsdale; S. R. McWhirter

Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey and present the resulting extragalactic catalogue, utilizing the first year of observations. The catalogue covers 24 831 square degrees, over declinations south of +30° and Galactic latitudes outside 10° of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307 455 radio sources with 20 separate flux density measurements across 72–231 MHz, selected from a time- and frequency-integrated image centred at 200 MHz, with a resolution of ≈ 2 arcmin. Over the catalogued region, we estimate that the catalogue is 90 per cent complete at 170 mJy and 50 per cent complete at 55 mJy and large areas are complete at even lower flux density levels. Its reliability is 99.97 per cent above the detection threshold of 5σ, which itself is typically 50 mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date and calibrate the low-frequency flux density scale of the southern sky to better than 10 per cent. This paper presents details of the flagging, imaging, mosaicking and source extraction/characterization, as well as estimates of the completeness and reliability. All source measurements and images are available online. 1 This is the first in a series of publications describing the GLEAM survey results.


Publications of the Astronomical Society of Australia | 2015

GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey

R. B. Wayth; E. Lenc; M. E. Bell; J. R. Callingham; K. S. Dwarakanath; Thomas M. O. Franzen; Bi Qing For; B. M. Gaensler; Paul Hancock; L. Hindson; Natasha Hurley-Walker; C. A. Jackson; M. Johnston-Hollitt; A. D. Kapińska; B. McKinley; J. Morgan; A. R. Offringa; P. Procopio; Lister Staveley-Smith; C. Wu; Q. Zheng; Cathryn M. Trott; G. Bernardi; Judd D. Bowman; F. Briggs; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; R. Goeke

© Astronomical Society of Australia 2015; published by Cambridge University Press. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/


Astroparticle Physics | 2001

Southern hemisphere observations of a 1018 eV cosmic ray source near the direction of the Galactic Centre

J. A. Bellido; R. W. Clay; Bruce R. Dawson; M. Johnston-Hollitt

We report on an analysis of data from the southern hemisphere SUGAR cosmic ray detector. We confirm the existence of an excess of 1018 eV cosmic rays from a direction close to the Galactic Centre, first reported by the AGASA group. We find that the signal is consistent with that from a point source, and we find no evidence for an excess of cosmic rays coming from the direction of the Galactic Centre itself.


The Astrophysical Journal | 2013

A study of fundamental limitations to statistical detection of redshifted H i from the epoch of reionization

Nithyanandan Thyagarajan; N. Udaya Shankar; Ravi Subrahmanyan; W. Arcus; G. Bernardi; Judd D. Bowman; F. Briggs; John D. Bunton; R. J. Cappallo; B. E. Corey; L. deSouza; D. Emrich; B. M. Gaensler; R. Goeke; L. J. Greenhill; B. J. Hazelton; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; B. B. Kincaid; R. Koenig; E. Kratzenberg; Colin J. Lonsdale; M. J. Lynch; S. Russell McWhirter; D. A. Mitchell; M. F. Morales; E. Morgan

In this paper, we explore for the first time the relative magnitudes of three fundamental sources of uncertainty, namely, foreground contamination, thermal noise, and sample variance, in detecting the H I power spectrum from the epoch of reionization (EoR). We derive limits on the sensitivity of a Fourier synthesis telescope to detect EoR based on its array configuration and a statistical representation of images made by the instrument. We use the Murchison Widefield Array (MWA) configuration for our studies. Using a unified framework for estimating signal and noise components in the H I power spectrum, we derive an expression for and estimate the contamination from extragalactic point-like sources in three-dimensional k -space. Sensitivity for EoR H I power spectrum detection is estimated for different observing modes with MWA. With 1000 hr of observing on a single field using the 128 tile MWA, EoR detection is feasible (S/N >1 for k ≲ 0.8 Mpc -1 ). Bandpass shaping and refinements to the EoR window are found to be effective in containing foreground contamination, which makes the instrument tolerant to imaging errors. We find that for a given observing time, observing many independent fields of view does not offer an advantage over a single field observation when thermal noise dominates over other uncertainties in the derived power spectrum.


The Astrophysical Journal | 2015

Foregrounds in wide-field redshifted 21 cm power spectra

Nithyanandan Thyagarajan; Daniel C. Jacobs; Judd D. Bowman; N. Barry; A. P. Beardsley; G. Bernardi; F. Briggs; R. J. Cappallo; P. Carroll; B. E. Corey; A. de Oliveira-Costa; Joshua S. Dillon; D. Emrich; A. Ewall-Wice; L. Feng; R. Goeke; L. J. Greenhill; B. J. Hazelton; Jacqueline N. Hewitt; Natasha Hurley-Walker; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; Han-Seek Kim; P. Kittiwisit; E. Kratzenberg; E. Lenc; J. Line; Abraham Loeb; Colin J. Lonsdale

Detection of 21 cm emission of H I from the epoch of reionization, at redshifts > z 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H I signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the “foreground wedge” in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity.

Collaboration


Dive into the M. Johnston-Hollitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judd D. Bowman

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Briggs

Australian National University

View shared research outputs
Top Co-Authors

Avatar

B. J. Hazelton

University of Washington

View shared research outputs
Top Co-Authors

Avatar

R. J. Cappallo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Lenc

University of Sydney

View shared research outputs
Researchain Logo
Decentralizing Knowledge