Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. K. Mohamad Haafiz is active.

Publication


Featured researches published by M. K. Mohamad Haafiz.


Carbohydrate Polymers | 2013

Isolation and characterization of microcrystalline cellulose from oil palm biomass residue

M. K. Mohamad Haafiz; Stephen J. Eichhorn; Azman Hassan; Mohammad Jawaid

In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.


Carbohydrate Polymers | 2013

Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose

M. K. Mohamad Haafiz; Azman Hassan; Zainoha Zakaria; I. M. Inuwa; Md. Saiful Islam; Mohammad Jawaid

In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Youngs modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.


Carbohydrate Polymers | 2014

Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose.

M. K. Mohamad Haafiz; Azman Hassan; Zainoha Zakaria; I. M. Inuwa

The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.


Carbohydrate Polymers | 2016

A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications

Abdul Khalil H.P.S.; Chaturbhuj K. Saurabh; A.S. Adnan; M.R. Nurul Fazita; M. I. Syakir; Y. Davoudpour; Mohd Rafatullah; C. K. Abdullah; M. K. Mohamad Haafiz; Rudi Dungani

Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications.


International Journal of Biological Macromolecules | 2016

Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review.

Djalal Trache; M. Hazwan Hussin; Caryn Tan Hui Chuin; S. Sabar; M.R. Nurul Fazita; Owolabi Folahan Abdul Wahab Taiwo; T.M. Hassan; M. K. Mohamad Haafiz

Considering its widespread usage in various fields, such as food, pharmaceutical, medical, cosmetic and polymer composites industries, microcrystalline cellulose (MCC) is becoming impellent due to increasing demand of alternatives to non-renewable and scarce fossil materials. Although it still suffers from some drawbacks, MCC has recently gained more interest owing to its renewability, non-toxicity, economic value, biodegradability, high mechanical properties, high surface area and biocompatibility. New sources, new isolation processes, and new treatments are currently under development to satisfy the increasing demand of producing new types of MCC-based materials on an industrial scale. Therefore, this review assembles the current knowledge on the isolation of MCC from different sources using various procedures, its characterization, and its application in bio-composites. Challenges and future opportunities of MCC-based composites are discussed as well as obstacles remaining for their extensive uses.


Advances in Materials Science and Engineering | 2013

Mechanical Properties and Morphological Characterization of PLA/Chitosan/Epoxidized Natural Rubber Composites

Zainoha Zakaria; Md. Saiful Islam; Azman Hassan; M. K. Mohamad Haafiz; Reza Arjmandi; I. M. Inuwa; Mahbub Hasan

Poly (lactic acid) (PLA)/chitosan (CS) natural polymer/epoxidised natural rubber (ENR) composites were successfully prepared through a solution casting method. The morphological characteristics of fabricated composites were investigated by scanning electron microscopy (SEM) and optical microscopy. The microstructure of PLA/ENR was significantly altered with the addition of CS. SEM analysis of composites fractured surfaces revealed smooth and homogeneous texture and good dispersion of CS. However for 15 wt% CS composites, the phase segregation and poor adhesion between the polymers were observed. Fourier transform infrared spectroscopy revealed some levels of attractive interaction between CS, PLA, and ENR in the composites. The mechanical properties of composites in terms of tensile strength and tensile modulus were significantly improved with the addition of CS into the matrix while the percent elongation at break decreased. The tensile strength increased up to 5 wt% CS loading for both PLA/CS and PLA/ENR/CS and thereafter decreased while Young’s modulus increased up to 10 wt%. However, when the CS content was increased to 15 wt%, the tensile strength and tensile modulus were slightly decreased. These improvements were attributed to good dispersion of CS at the optimum filler levels and attractive interaction between the composites components.


International Journal of Biological Macromolecules | 2016

Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties

M. K. Mohamad Haafiz; Azman Hassan; H. P. S. Abdul Khalil; M.R. Nurul Fazita; Md. Saiful Islam; I. M. Inuwa; M. M. Marliana; M. Hazwan Hussin

In this work, polylactic acid (PLA) reinforced cellulose nanowhiskers (CNW) were prepared through solution casting technique. The CNW was first isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) by using 64% H2SO4 and was designated as CNW-S. The optical microscopy revealed that the large particle of OPEFB-MCC has been broken down by the hydrolysis treatment. The atomic force microscopy confirmed that the CNW-S obtained is in nanoscale dimension and appeared in individual rod-like character. The produced CNW-S was then incorporated with PLA at 1, 3, and 5 parts per hundred (phr) resins for the PLA-CNW-S nanocomposite production. The synthesized nanocomposites were then characterized by a mean of tensile properties and thermal stability. Interestingly to note that incorporating of 3 phr/CNW-S in PLA improved the tensile strength by 61%. Also, CNW-S loading showed a positive impact on the Youngs modulus of PLA. The elongation at break (Eb) of nanocomposites, however, decreased with the addition of CNW-S. Field emission scanning electron microscopy and transmission electron microscopy revealed that the CNW-S dispersed well in PLA at lower filler loading before it started to agglomerate at higher CNW-S loading (5phr). The DSC analysis of the nanocomposites obtained showed that Tg,Tcc and Tm values of PLA were improved with CNW-S loading. The TGA analysis however, revealed that incopreated CNW-S in PLA effect the thermal stability (T10,T50 and Tmax) of nanocomposite, where it decrease linearly with CNW-S loading.


International Journal of Biological Macromolecules | 2016

Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.

Reza Arjmandi; Azman Hassan; M. K. Mohamad Haafiz; Zainoha Zakaria; Md. Saiful Islam

Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Youngs modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4).


International Journal of Biological Macromolecules | 2015

Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites.

Reza Arjmandi; Azman Hassan; M. K. Mohamad Haafiz; Zainoha Zakaria

In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Youngs modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA.


International Journal of Biological Macromolecules | 2016

Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents

M. Hazwan Hussin; Nurul Aqilah Pohan; Zaharaddeen N. Garba; M. Jain Kassim; Afidah Abdul Rahim; Nicolas Brosse; Mehdi Yemloul; M.R. Nurul Fazita; M. K. Mohamad Haafiz

The present study sheds light on the physical and chemical characteristics of microcrystalline cellulose (MCC) isolated from oil palm fronds (OPF) pulps. It was found that the OPF MCC was identified as cellulose II polymorph, with higher crystallinity index than OPF α-cellulose (CrIOPFMCC: 71%>CrIOPFα-cellulose: 47%). This indicates that the acid hydrolysis allows the production of cellulose that is highly crystalline. BET surface area of OPF MCC was found to be higher than OPF α-cellulose (SBETOPFMCC: 5.64m2g-1>SBETOPFα-cellulose:Qa0 2.04m2g-1), which corroborates their potential as an adsorbent. In batch adsorption studies, it was observed that the experimental data fit well with Langmuir adsorption isotherm in comparison to Freundlich isotherm. The monolayer adsorption capacity (Qa0) of OPF MCC was found to be around 51.811mgg-1 and the experimental data fitted well to pseudo-second-order kinetic model.

Collaboration


Dive into the M. K. Mohamad Haafiz's collaboration.

Top Co-Authors

Avatar

Azman Hassan

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Reza Arjmandi

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Zainoha Zakaria

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

I. M. Inuwa

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammad Jawaid

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. I. Syakir

Universiti Sains Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge