Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Kaminska is active.

Publication


Featured researches published by M. Kaminska.


Journal of Chemical Physics | 2009

Dissociative recombination of highly enriched para-H-3(+)

Brian A. Tom; V. Zhaunerchyk; Michael B. Wiczer; Andrew A. Mills; Kyle N. Crabtree; M. Kaminska; Wolf D. Geppert; M. Hamberg; Magnus af Ugglas; Erik Vigren; Wim J. van der Zande; Mats Larsson; Richard D. Thomas; Benjamin J. McCall

The determination of the dissociative recombination rate coefficient of H(3) (+) has had a turbulent history, but both experiment and theory have recently converged to a common value. Despite this convergence, it has not been clear if there should be a difference between the rate coefficients for ortho-H(3) (+) and para-H(3) (+). A difference has been predicted theoretically and could conceivably impact the ortho:para ratio of H(3) (+) in the diffuse interstellar medium, where H(3) (+) has been widely observed. We present the results of an experiment at the CRYRING ion storage ring in which we investigated the dissociative recombination of highly enriched ( approximately 83.6%) para-H(3) (+) using a supersonic expansion source that produced ions with T(rot) approximately 60-100 K. We observed an increase in the low energy recombination rate coefficient of the enriched para-H(3) (+) by a factor of approximately 1.25 in comparison to H(3) (+) produced from normal H(2) (ortho:para=3:1). The ratio of the rate coefficients of pure para-H(3) (+) to that of pure ortho-H(3) (+) is inferred to be approximately 2 at low collision energies; the corresponding ratio of the thermal rate coefficients is approximately 1.5 at electron temperatures from 60 to 1000 K. We conclude that this difference is unlikely to have an impact on the interstellar ortho:para ratio of H(3) (+).


The Astrophysical Journal | 2004

DISSOCIATIVE RECOMBINATION OF NITRILE IONS: DCCCN + AND DCCCND +

Wolf D. Geppert; A. Ehlerding; Fredrik Hellberg; J. Semaniak; Fabian Österdahl; M. Kaminska; A. Al-Khalili; V. Zhaunerchyk; Richard D. Thomas; M. af Ugglas; A. Källberg; Ansgar Simonsson; Mats Larsson

Branching ratios and absolute cross sections have been measured for the dissociative recombination of DCCCN+ and DCCCND+ using the CRYRING ion storage ring. In the case of DCCCN+ the dissociation y ...


Journal of the Chemical Society, Faraday Transactions | 2006

Dissociative recombination of protonated methanol

Wolf D. Geppert; M. Hamberg; Richard D. Thomas; Fabian Österdahl; Fredrik Hellberg; V. Zhauernerchyk; A. Ehlerding; T. J. Millar; Helen Roberts; J. Semaniak; M. af Ugglas; A. Källberg; Ansgar Simonsson; M. Kaminska; Mats Larsson

The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH3OH2+ and CD3OD2+ have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH3OH2+ and CD3OD2+, respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C-O bond, the major process being the three-body break-up forming CH3, OH and H (CD3, OD and D). The overall cross sections are best fitted by sigma = 1.2 +/- 0.1 x 10(-15) E(-1.15 +/- 0.02) cm2 and sigma = 9.6 +/- 0.9 x 10(-16) E(-1.20 +/- 0.02) cm2 for CH3OH2+ and CD3OD2+, respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 +/- 0.9 x 10(-7) (T/300)(-0.59 +/- 0.02) cm3 s(-1) (CH3OH2+) and k(T) = 9.1 +/- 0.9 x 10(-7) (T/300)(-0.63 +/- 0.02) cm3 s(-1) (CD3OD2+) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH3+ and H2O and subsequent dissociative recombination of the resulting CH3OH2+ ion to yield methanol and hydrogen atoms is therefore very unlikely.


Journal of Physics: Conference Series | 2005

Dissociative recombination branching ratios and their influence on interstellar clouds

Wolf D. Geppert; Richard D. Thomas; A. Ehlerding; Fredrik Hellberg; Fabian Österdahl; M. Hamberg; J. Semaniak; V. Zhaunerchyk; M. Kaminska; A. Källberg; A Paal; Mats Larsson

Cross sections and branching ratios for the dissociative recombination (DR) reactions of the astrophysically important ions HN2+, HCO+, DOCO+, and SO2+ at reactant kinetic energies from 1 to 1000 meV have been measured using the CRYRING ion storage ring facility at the Manne Siegbahn Laboratory, Stockholm University. Whereas the break-up of the N-N bond leading to NH + N is the major pathway in the DR of HN2+, the analogous reaction in HCO+ almost exclusively leads to H and CO. In the DR of both DOCO+ and SO2+ three-body break-up was observed. Inclusion of the newly measured branching ratios into a standard model on dark interstellar clouds leads to an improvement of the predictions of such models, especially concerning the abundances of nitrogen compounds. The impact of these newly found branching ratios and reaction rates on the chemistry of different astronomical environments like dark clouds, circumstellar envelopes and planetary ionospheres, is discussed.


Physical Chemistry Chemical Physics | 2008

Dissociative recombination of fully deuterated protonated acetonitrile, CD3CND+: product branching fractions, absolute cross section and thermal rate coefficient

Erik Vigren; M. Kaminska; M. Hamberg; V. Zhaunerchyk; Richard D. Thomas; Mathias Danielsson; J. Semaniak; Patrik U. Andersson; Mats Larsson; Wolf D. Geppert

The dissociative recombination of fully deuterated protonated acetonitrile, CD(3)CND(+), has been investigated at the CRYRING heavy ion storage ring, located at the Manne Siegbahn Laboratory, Stockholm, Sweden. Branching fractions were measured at approximately 0 eV relative collision energy between the ions and the electrons and in 65% of the DR events there was no rupture of bonds between heavy atoms. In the remaining 35%, one of the bonds between the heavy atoms was broken. The DR cross-section was measured between approximately 0 eV and 1 eV relative collision energy. In the energy region between 1 meV and 0.1 eV the cross section data were best fitted by the expression sigma = 7.37 x 10(-16) (E/eV)(-1.23) cm(2), whereas sigma = 4.12 x 10(-16) (E/eV)(-1.46) cm(2) was the best fit for the energy region between 0.1 and 1.0 eV. From the cross section a thermal rate coefficient of alpha(T) = 8.13 x 10(-7) (T/300)(-0.69) cm(3) s(-1) was deduced.


The Astrophysical Journal | 2005

Dissociative Recombination of the Thioformyl (HCS+) and Carbonyl Sulfide (OCS+) Cations

H. Montaigne; Wolf D. Geppert; J. Semaniak; Fabian Österdahl; Fredrik Hellberg; Richard D. Thomas; M. af Ugglas; Helen Roberts; T. J. Millar; V. Zhaunerchyk; M. Kaminska; A. Al-Khalili; A. Källberg; Mats Larsson

Branching ratios and absolute cross sections have been measured for the dissociative recombination of HCS+ and OCS+ at the CRYRING ion storage ring. In the case of OCS+, the channel leading to CO + S (83%) dominates, whereas the other exoergic pathways leading to CS + O (14%) and C + SO (3%) are of lesser importance. In the case of HCS+, fracture of the C–S bond is predominant (81%), with the production of H + CS accounting for the remainder (19%). The cross section of the reaction could be fitted by the expressions σ = 1.41 × 10-15E(eV)-1.11 and 4.47 × 10-16E(eV)-1.14 cm2 for HCS+ and OCS+, respectively. The derived energy dependences of the thermal reaction rate coefficients can be fitted by k(T) = 9.7 × 10-7(T/300)-0.57 and 3.5 × 10-7(T/300)-0.62 cm3 s-1 for HCS+ and OCS+, respectively. We use these data to perform model calculations on the HCS+/CS abundance ratio in dark clouds and find that the models using the UMIST and Ohio State University databases have even more difficulty in accounting for the large observed ratio.


Molecular Physics | 2007

Experimental determination of dissociative recombination of CH2OH+, CD2OD+, and CD2+

Mattias Hamberg; Wolf D. Geppert; Richard D. Thomas; V. Zhaunerchyk; Fabian Österdahl; A. Ehlerding; M. Kaminska; J. Semaniak; Magnus af Ugglas; A. Källberg; A. Paal; Ansgar Simonsson; Mats Larsson

Measurements of the cross-sections and branching ratios of the dissociative recombination of the ions CH2OH þ, CD2OD þ and CD2OD þ 2 have been performed at the CRYRING storage ring located in Stockholm, Sweden. Evaluation of the data yielded reaction rate coefficients of: 7.0 10 (T/300) 0.78 cmmol 1 s 1 for CH2OH; 7.5 10 (T/300) 0.70 cmmol 1 s 1 for CD2OD þ and 1.51 10 (T/300) 0.66 cmmol 1 s 1 for CD2OD2 . Calculation of the branching ratios for CH2OH þ and its deuterated isotopologue gave the following results for the DR reaction channels involving C–O bond fissure: H2OþCH (2.2%) and CH2þOH (5.5%) in the reaction of CH2OH þ as well as D2OþCD (5%) and CD2þOD (18%) for the dissociative recombination of CD2OD þ. The remainder of the reaction flux kept the C–O bond intact: 92% for CH2OH þ and 77% for CD2OD þ, respectively. Other recent measurements on the CH3OH þ 2 ion indicate dominating bond breaking between the heavy atoms, which is in contrast to this experiment. For CD2OD þ 2 CO-bond breaking was observed for 43% of the reaction flux.Measurements of the cross-sections and branching ratios of the dissociative recombination of the ions CH2OH+, CD2OD+ and CD2OD2+ have been performed at the CRYRING storage ring located in Stockholm, Sweden. Evaluation of the data yielded reaction rate coefficients of: 7.0 x 10-7( T/300) -0.78 cm3mol-1s -1 for CH2OH+; 7.5 x 10-7(T/300) -0.70 cm3 mol-1s-1 for CD2OD+ and 1.51 x 10-6(T/300)-0.66 cm3 mol-1s-1 for CD2OD2+. Calculation of the branching ratios for CH2OH+ and its deuterated isotopologue gave the following results for the DR reaction channels involving C-O bond fissure: H2O+CH (2.2%) and CH2+OH (5.5%) in the reaction of CH2OH+ as well as D2O+CD (5%) and CD2+OD (18%) for the dissociative recombination of CD2OD+. The remainder of the reaction flux kept the C-O bond intact: 92% for CH2OH+ and 77% for CD2OD+, respectively. Other recent measurements on the CH3OH2+ ion indicate dominating bond breaking between the heavy atoms which is conversely to this experiment. For CD2OD2+ CO-bond breaking was observed for 57% of the reaction flux.


The Astrophysical Journal | 2012

Reassessment of the dissociative recombination of n2h+ at cryring

Erik Vigren; V. Zhaunerchyk; M. Hamberg; M. Kaminska; J. Semaniak; M. af Ugglas; Mats Larsson; Richard D. Thomas; Wolf D. Geppert

The dissociative recombination (DR) of N2H+ has been reinvestigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. Thermal rate coefficients for electr ...


Astronomy and Astrophysics | 2010

Experimental studies of the dissociative recombination processes for the dimethyl ether ions CD3OCD2+ and (CD3)2OD+

M. Hamberg; F. Österdahl; Richard D. Thomas; V. Zhaunerchyk; Erik Vigren; M. Kaminska; M. af Ugglas; A. Källberg; Ansgar Simonsson; A. Paal; Mats Larsson; Wolf D. Geppert

Aims: Determination of branching fractions, cross sections and thermal rate coefficients for the dissociative recombination of CD3OCD2+ (0-0.3 eV) and (CD3)2OD+ (0-0.2 eV) at the low relative kinet ...


The Astrophysical Journal | 2009

The Dissociative Recombination of Protonated Acrylonitrile, CH2CHCNH+, with Implications for the Nitrile Chemistry in Dark Molecular Clouds and the Upper Atmosphere of Titan

Erik Vigren; M. Hamberg; V. Zhaunerchyk; M. Kaminska; Richard D. Thomas; Mats Larsson; T. J. Millar; Catherine Walsh; Wolf D. Geppert

Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Sto ...

Collaboration


Dive into the M. Kaminska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Thomas

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Semaniak

Jan Kochanowski University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge