Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Karabacak is active.

Publication


Featured researches published by M. Karabacak.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid

M. Karabacak; Mehmet Cinar

In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Synthesis, molecular conformation, vibrational and electronic transition, isometric chemical shift, polarizability and hyperpolarizability analysis of 3-(4-Methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile: A combined experimental and theoretical analysis

Abdullah M. Asiri; M. Karabacak; Mustafa Kurt; Khalid A. Alamry

This work presents the synthesis and characterization of a novel compound, 3-(4-methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile (abbreviated as 3-(4MP)-2-(4-NP)-AN, C(16)H(12)N(2)O(3)). The spectroscopic properties of the compound were examined by FT-IR, UV-vis and NMR ((1)H and (13)C) techniques. FT-IR spectrum in solid state was observed in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound which dissolved in chloroform was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. To determine lowest-energy molecular conformation of the title molecule, the selected torsion angle is varied every 10° and molecular energy profile is calculated from 0° to 360°. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP/6-31G(d,p) basis set. The dipole moment, linear polarizability and first hyperpolarizability values were also computed using the same basis set. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analysis were used to elucidate information regarding charge transfer within the molecule. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT and TD-DFT method produce good results. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the title compound can be used as a good nonlinear optical material. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2008

Comparison of experimental and density functional study on the molecular structure, infrared and Raman spectra and vibrational assignments of 6-chloronicotinic acid.

M. Karabacak; Mustafa Kurt

The experimental and theoretical study on the structures and vibrations of 6-chloronicotinic acid (6-CNA, C(6)H(4)ClNO(2)) are presented. The Fourier transform infrared spectra (4,000-50 cm(-1)) and the Fourier transform Raman spectra (3,500-50 cm(-1)) of the title molecule in solid phase have been recorded, for the first time. The geometrical parameters and energies have been obtained for all four conformers from DFT (B3LYP) with different basis sets calculations. There are four conformers, C1, C2, C3, and C4 for this molecule. The computational results diagnose the most stable conformer of 6-CNA as the C1 form. The vibrations of the two stable and two unstable conformers of 6-CNA are researched with the aid of quantum chemical calculations. The molecular structure, vibrational frequencies, infrared intensities and Raman scattering activities and theoretical vibrational spectra were calculated a pair of molecules linked by the intermolecular OH...O hydrogen bond. The spectroscopic and theoretical results are compared to the corresponding properties for 6-CNA stable monomers and dimer of C1 conformer.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

FT-IR, FT-Raman, NMR and UV–vis spectra, vibrational assignments and DFT calculations of 4-butyl benzoic acid

M. Karabacak; Zeliha Cinar; Mustafa Kurt; S. Sudha; N. Sundaraganesan

The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule.


Molecular Physics | 2009

Experimental (UV, NMR, IR and Raman) and theoretical spectroscopic properties of 2-chloro-6-methylaniline

M. Karabacak; Mustafa Kurt; Mehmet Cinar; Ali Çoruh

In this work, the experimental and theoretical UV, NMR and vibrational spectra of 2-chloro-6-methylaniline (2-Cl-6-MA, C7H8NCl) were studied. The ultraviolet absorption spectra of compound that dissolved in ethanol were examined in the range of 200–400 nm. The 1H, 13C and DEPT NMR spectra of the compound were recorded. FT-IR and FT-Raman spectra of 2-Cl-6-MA in the liquid phase were recorded in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies were found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated NMR chemical shifts and absorption wavelengths with the experimental values revealed that DFT method produces good results.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory.

D. Sajan; Lynnette Joseph; N. Vijayan; M. Karabacak

The spectroscopic properties of the crystallized nonlinear optical molecule L-histidinium bromide monohydrate (abbreviated as L-HBr-mh) have been recorded and analyzed by FT-IR, FT-Raman and UV techniques. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the crystal were calculated with the help of density functional theory computations. The optimized geometric bond lengths and bond angles obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The natural bond orbital (NBO) analysis confirms the occurrence of strong intra and intermolecular N-H⋯O hydrogen bonding.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2010

FT-IR, FT-Raman, NMR spectra and DFT calculations on 4-chloro-N-methylaniline

A. Usha Rani; N. Sundaraganesan; Mustafa Kurt; Mehmet Cinar; M. Karabacak

In this work, the vibrational spectral analysis was carried out by using FT-IR and FT-Raman spectroscopy in the range 400-4000 and 50-3500cm(-1) respectively, for the title molecule. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments of all the vibrational mode were performed on the basis of the total energy distributions (TED). (13)C and (1)H NMR chemical shifts results were given and are in agreement with the corresponding experimental values. The theoretically constructed FT-IR and FT-Raman spectra exactly coincides with experimental one.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

Molecular structure, vibrational, UV and NBO analysis of 4-chloro-7-nitrobenzofurazan by DFT calculations.

Mustafa Kurt; P. Chinna Babu; N. Sundaraganesan; Mehmet Cinar; M. Karabacak

In the present work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of 4-chloro-7-nitrobenzofurazan (NBD-Chloride). The FT-IR (400-4000 cm(-1)) and FT-Raman spectra (50-4000 cm(-1)) of NBD-Chloride were recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of NBD-Chloride in the ground-state have been calculated by using the density functional B3LYP method with 6-311++G (d, p) as higher basis set. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) result in DMSO and CDCl3 solvents complements with each other. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulate infrared and Raman spectra of the title compound which show good agreement with observed spectra.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

FT-IR, UV–vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: A combined experimental and theoretical analysis

Mehmet Cinar; Ali Çoruh; M. Karabacak

This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO–LUMO and electronic structure calculations on 4-chloro-3-nitrotoluene

M. Govindarajan; M. Karabacak; A. Suvitha; S. Periandy

In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm(-1) and 50-4000 cm(-1), respectively, for 4-chloro-3-nitrotoluene (C7H6NO2Cl) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The effects due to the substitutions of methyl group, nitro group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed.

Collaboration


Dive into the M. Karabacak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmet Atac

Celal Bayar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etem Kose

Celal Bayar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge