M. Kathryn Liszewski
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Kathryn Liszewski.
Blood | 2008
Véronique Frémeaux-Bacchi; Elizabeth C. Miller; M. Kathryn Liszewski; Lisa Strain; Jacques Blouin; Alison L. Brown; Nadeem Moghal; Bernard S. Kaplan; Robert Weiss; Karl Lhotta; Gaurav Kapur; Tej K. Mattoo; Hubert Nivet; William Wong; Sophie Gie; Bruno Hurault De Ligny; Michel Fischbach; Ritu Gupta; Richard E. Hauhart; Vincent Meunier; Chantal Loirat; Marie Agnès Dragon-Durey; Wolf H. Fridman; Bert J. C. Janssen; Timothy H.J. Goodship; John P. Atkinson
Atypical hemolytic uremic syndrome (aHUS) is a disease of complement dysregulation. In approximately 50% of patients, mutations have been described in the genes encoding the complement regulators factor H, MCP, and factor I or the activator factor B. We report here mutations in the central component of the complement cascade, C3, in association with aHUS. We describe 9 novel C3 mutations in 14 aHUS patients with a persistently low serum C3 level. We have demonstrated that 5 of these mutations are gain-of-function and 2 are inactivating. This establishes C3 as a susceptibility factor for aHUS.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Anna Richards; Elizabeth J. Kemp; M. Kathryn Liszewski; Judith A. Goodship; Ak Lampe; Ronny Decorte; M. Hamza Müslümanogğlu; Salih Kavukcu; Guido Filler; Yves Pirson; Leana S. Wen; John P. Atkinson; Timothy H.J. Goodship
Membrane cofactor protein (MCP; CD46) is a widely expressed transmembrane complement regulator. Like factor H it inhibits complement activation by regulating C3b deposition on targets. Factor H mutations occur in 10–20% of patients with hemolytic uremic syndrome (HUS). We hypothesized that MCP mutations could predispose to HUS, and we sequenced MCP coding exons in affected individuals from 30 families. MCP mutations were detected in affected individuals of three families: a deletion of two amino acids (D237/S238) in family 1 (heterozygous) and a substitution, S206P, in families 2 (heterozygous) and 3 (homozygous). We evaluated protein expression and function in peripheral blood mononuclear cells from these individuals. An individual with the D237/S238 deletion had reduced MCP levels and ≈50% C3b binding compared with normal controls. Individuals with the S206P change expressed normal quantities of protein, but demonstrated ≈50% reduction in C3b binding in heterozygotes and complete lack of C3b binding in homozygotes. MCP expression and function was evaluated in transfectants reproducing these mutations. The deletion mutant was retained intracellularly. S206P protein was expressed on the cell surface but had a reduced ability to prevent complement activation, consistent with its reduced C3b binding and cofactor activity. This study presents further evidence that complement dysregulation predisposes to development of thrombotic microangiopathy and that screening patients for such defects could provide informed treatment strategies.
Molecular Microbiology | 1997
Helena Källström; M. Kathryn Liszewski; John P. Atkinson; Ann-Beth Jonsson
Pili of Neisseria gonorrhoeae and Neisseria meningitidis mediate binding of the bacteria to human cell‐surface receptors. We found that purified pili bound to a 55‐ to 60‐kDa doublet band on SDS–PAGE of separated human epithelial cell extracts. This is a migration pattern typical of membrane cofactor protein (MCP or CD46). MCP is a widely distributed human complement regulatory protein. Attachment of the bacteria to epithelial cells was blocked by polyclonal and monoclonal antibodies directed against MCP, suggesting that this complement regulator is a receptor for piliated Neisseria. We proved this hypothesis by demonstrating that piliated, but not non‐piliated, gonococci bound to CHO cells transfected with human MCP‐cDNA. We also demonstrated a direct interaction between purified recombinant MCP and piliated Neisseria. Finally, recombinant MCP protein produced in E. coli inhibited attachment of the bacteria to target cells. Taken together, our data show that MCP is a human cell‐surface receptor for piliated pathogenic Neisseria.
Nature Genetics | 2007
Anna Richards; Arn M. J. M. van den Maagdenberg; Joanna C. Jen; David J. Kavanagh; Paula Bertram; Dirk Spitzer; M. Kathryn Liszewski; Maria Louise Barilla-Labarca; Gisela M. Terwindt; Yumi Kasai; Michael D. McLellan; Mark Gilbert Grand; Kaate R. J. Vanmolkot; Boukje de Vries; Jijun Wan; Michael J. Kane; Hafsa Mamsa; Ruth Schäfer; Anine H. Stam; Joost Haan; Paulus T. V. M. de Jong; C. W. J. M. Storimans; Mary J. van Schooneveld; Jendo A. Oosterhuis; Andreas Gschwendter; Martin Dichgans; Katya E. Kotschet; Suzanne J. Hodgkinson; Todd A. Hardy; Martin B. Delatycki
Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle-age onset. In nine families, we identified heterozygous C-terminal frameshift mutations in TREX1, which encodes a 3′-5′ exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have implications for the maintenance of vascular integrity in the degenerative cerebral microangiopathies leading to stroke and dementias.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Kyung Min Chung; M. Kathryn Liszewski; Grant E. Nybakken; Alan E. Davis; Raymond R. Townsend; Daved H. Fremont; John P. Atkinson; Michael S. Diamond
The complement system, by virtue of its dual effector and priming functions, is a major host defense against pathogens. Flavivirus nonstructural protein (NS)-1 has been speculated to have immune evasion activity, because it is a secreted glycoprotein, binds back to cell surfaces, and accumulates to high levels in the serum of infected patients. Herein, we demonstrate an immunomodulatory function of West Nile virus NS1. Soluble and cell-surface-associated NS1 binds to and recruits the complement regulatory protein factor H, resulting in decreased complement activation in solution and attenuated deposition of C3 fragments and C5b–9 membrane attack complexes on cell surfaces. Accordingly, extracellular NS1 may function to minimize immune system targeting of West Nile virus by decreasing complement recognition of infected cells.
PLOS Medicine | 2011
Jane E. Salmon; Cara Heuser; Michael Triebwasser; M. Kathryn Liszewski; David J. Kavanagh; Lubka T. Roumenina; D. Ware Branch; Timothy H.J. Goodship; Véronique Frémeaux-Bacchi; John P. Atkinson
Jane Salmon and colleagues studied 250 pregnant patients with SLE and/or antiphospholipid antibodies and found an association of risk variants in complement regulatory proteins in patients who developed preeclampsia, as well as in preeclampsia patients lacking autoimmune disease.
Immunity | 2013
M. Kathryn Liszewski; Martin Kolev; Gaelle Le Friec; Marilyn K. Leung; Paula Bertram; Antonella F. Fara; Marta Subias; Matthew C. Pickering; Christian Drouet; Seppo Meri; T. Petteri Arstila; Pirkka T. Pekkarinen; Margaret H. Ma; Andrew P. Cope; Thomas Reinheckel; Santiago Rodríguez de Córdoba; Behdad Afzali; John P. Atkinson; Claudia Kemper
Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.
Journal of Virology | 2005
Marko Marttila; David Persson; Dan J. Gustafsson; M. Kathryn Liszewski; John P. Atkinson; Göran Wadell; Niklas Arnberg
ABSTRACT The 51 human adenovirus serotypes are divided into six species (A to F). Adenovirus serotypes from all species except species B utilize the coxsackie-adenovirus receptor for attachment to host cells in vitro. Species B adenoviruses primarily cause ocular and respiratory tract infections, but certain serotypes are also associated with renal disease. We have previously demonstrated that adenovirus type 11 (species B) uses CD46 (membrane cofactor protein) as a cellular receptor instead of the coxsackie-adenovirus receptor (A. Segerman et al., J. Virol. 77:9183-9191, 2003). In the present study, we found that transfection with human CD46 cDNA rendered poorly permissive Chinese hamster ovary cells more permissive to infection by all species B adenovirus serotypes except adenovirus types 3 and 7. Moreover, rabbit antiserum against human CD46 blocked or efficiently inhibited all species B serotypes except adenovirus types 3 and 7 from infecting human A549 cells. We also sequenced the gene encoding the fiber protein of adenovirus type 50 (species B) and compared it with the corresponding amino acid sequences from selected serotypes, including all other serotypes of species B. From the results obtained, we conclude that CD46 is a major cellular receptor on A549 cells for all species B adenoviruses except types 3 and 7.
Journal of Immunology | 2002
Maria L. Barilla-LaBarca; M. Kathryn Liszewski; John D. Lambris; Dennis E. Hourcade; John P. Atkinson
C4b and C3b deposited on host cells undergo limited proteolytic cleavage by regulatory proteins. Membrane cofactor protein (MCP; CD46), factor H, and C4b binding protein mediate this reaction, known as cofactor activity, that also requires the plasma serine protease factor I. To explore the roles of the fluid phase regulators vs those expressed on host cells, a model system was used examining complement fragments deposited on cells transfected with human MCP as assessed by FACS and Western blotting. Following incubation with Ab and complement on MCP+ cells, C4b was progressively cleaved over the first hour to C4d and C4c. There was no detectable cleavage of C4b on MCP− cells, indicating that MCP (and not C4BP in the serum) primarily mediates this cofactor activity. C3b deposition was not blocked on MCP+ cells because classical pathway activation occurred before substantial C4b cleavage. Cleavage, though, of deposited C3b was rapid (<5 min) and iC3b was the dominant fragment on MCP− and MCP+ cells. Studies using a function-blocking mAb further established factor H as the responsible cofactor. If the level of Ab sensitization was reduced 8-fold or if Mg2+-EGTA was used to block the classical pathway, MCP efficiently inhibited C3b deposition mediated by the alternative pathway. Thus, for the classical pathway, MCP is the cofactor for C4b cleavage and factor H for C3b cleavage. However, if the alternative pathway mediates C3b deposition, then MCP’s cofactor activity is sufficient to restrict complement activation.
Journal of Immunology | 2000
Guixian Wang; M. Kathryn Liszewski; Andrew C. Chan; John P. Atkinson
Membrane cofactor protein (MCP; CD46) is a widely expressed type 1 transmembrane glycoprotein that inhibits complement activation on host cells. It also is a receptor for several pathogens including measles virus, Streptococcus pyogenes, Neisseria gonorrhea, and Neisseria meningitidis. That MCP may have signaling capability was suggested by its microbial interactions. That is, binding of MCP on human monocytes by measles virus hemagglutinin or cross-linking by an anti-MCP Ab resulted in IL-12 down-regulation, while binding to MCP by Neisseria on epithelial cells produced a calcium flux. Through alternative splicing, MCP is expressed on most cells with two distinct cytoplasmic tails of 16 (CYT-1) or 23 (CYT-2) amino acids. These play pivotal roles in intracellular precursor processing and basolateral localization. We investigated the putative signal transduction pathway mediated by MCP and demonstrate that CYT-2, but not CYT-1, is phosphorylated on tyrosine. We examined MCP tail peptides and performed Ab cross-linking experiments on several human cell lines and MCP isoform transfectants. We found an MCP peptide of CYT-2 was phosphorylated by a src kinase system. Western blots of the cells lines demonstrated that cells bearing CYT-2 were also phosphorylated on tyrosine. Additionally, we provide genetic and biochemical evidence that the src family of kinases is responsible for the latter phosphorylation events. In particular, the src kinase, Lck, is required for phosphorylation of MCP in the Jurkat T cell line. Taken together, these studies suggest a src family-dependent pathway for signaling through MCP.