M. L. Bissell
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. L. Bissell.
Physical Review Letters | 2008
W. Nörtershäuser; D. Tiedemann; M. Žáková; Z. Andjelkovic; Klaus Blaum; M. L. Bissell; R. Cazan; Gordon W. F. Drake; Ch. Geppert; M. Kowalska; J. Krämer; A. Krieger; R. Neugart; R. Sánchez; F. Schmidt-Kaler; Zong-Chao Yan; D. T. Yordanov; C. Zimmermann
Nuclear charge radii of ;{7,9,10,11}Be have been determined by high-precision laser spectroscopy. On-line measurements were performed with collinear laser spectroscopy in the 2s_{1/2}-->2p_{1/2} transition on a beam of Be+ ions. Collinear and anticollinear laser beams were used simultaneously, and the absolute frequency determination using a frequency comb yielded an accuracy in the isotope-shift measurements of about 1 MHz. Combining this with accurate calculations of the mass-dependent isotope shifts yields nuclear charge radii. The charge radius decreases from 7Be to 10Be and then increases for the halo nucleus 11Be. When comparing our results with predictions of ab initio nuclear-structure calculations we find good agreement. Additionally, the nuclear magnetic moment of 7Be was determined to be -1.3995(5)micro_{N} and that of 11Be was confirmed with an accuracy similar to previous beta-NMR measurements.
Physical Review Letters | 2009
W. Nörtershäuser; D. Tiedemann; M. Záková; Z. Andjelkovic; Klaus Blaum; M. L. Bissell; R. Cazan; G. W. F. Drake; C. Geppert; M. Kowalska; J. Krämer; Abba M. Krieger; R. Neugart; R. Sánchez; F. Schmidt-Kaler; Z.-C. Yan; D. T. Yordanov; C. Zimmermann
Nuclear charge radii of ;{7,9,10,11}Be have been determined by high-precision laser spectroscopy. On-line measurements were performed with collinear laser spectroscopy in the 2s_{1/2}-->2p_{1/2} transition on a beam of Be+ ions. Collinear and anticollinear laser beams were used simultaneously, and the absolute frequency determination using a frequency comb yielded an accuracy in the isotope-shift measurements of about 1 MHz. Combining this with accurate calculations of the mass-dependent isotope shifts yields nuclear charge radii. The charge radius decreases from 7Be to 10Be and then increases for the halo nucleus 11Be. When comparing our results with predictions of ab initio nuclear-structure calculations we find good agreement. Additionally, the nuclear magnetic moment of 7Be was determined to be -1.3995(5)micro_{N} and that of 11Be was confirmed with an accuracy similar to previous beta-NMR measurements.
Physical Review Letters | 2012
A. Krieger; R. Neugart; J. Krämer; G. Neyens; Klaus Blaum; Ch. Novotny; Kim Dieter Kreim; M. Hammen; W. Nörtershäuser; M. L. Bissell; R. Sánchez; Ch. Geppert; D. T. Yordanov; T. Neff; N. Frömmgen; M. Kowalska
The nuclear charge radius of (12)Be was precisely determined using the technique of collinear laser spectroscopy on the 2s(1/2)→2p(1/2,3/2) transition in the Be(+) ion. The mean square charge radius increases from (10)Be to (12)Be by δ(10,12)=0.69(5) fm(2) compared to δ(10,11)=0.49(5) fm(2) for the one-neutron halo isotope ^{11}Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of ^{12}Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.
Physical Review Letters | 2013
D. T. Yordanov; D. L. Balabanski; Jacek Bieron; M. L. Bissell; Klaus Blaum; I. Budinčević; S. Fritzsche; N. Frömmgen; G. Georgiev; Ch. Geppert; M. Hammen; M. Kowalska; Kim Dieter Kreim; A. Krieger; R. Neugart; W. Nörtershäuser; J. Papuga; S.A. Schmidt
The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-uv excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in (127)Cd and (129)Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2(-) quadrupole moments. Remarkably, this mechanism is found to act well beyond the h(11/2) shell.
Physical Review Letters | 2012
A. Krieger; Klaus Blaum; M. L. Bissell; N. Frömmgen; Ch. Geppert; M. Hammen; Kim Dieter Kreim; M. Kowalska; J. Krämer; T. Neff; R. Neugart; G. Neyens; W. Nörtershäuser; Ch. Novotny; R. Sánchez; D. T. Yordanov
The nuclear charge radius of (12)Be was precisely determined using the technique of collinear laser spectroscopy on the 2s(1/2)→2p(1/2,3/2) transition in the Be(+) ion. The mean square charge radius increases from (10)Be to (12)Be by δ(10,12)=0.69(5) fm(2) compared to δ(10,11)=0.49(5) fm(2) for the one-neutron halo isotope ^{11}Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of ^{12}Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.
In: Freeman, Sean . Rutherford Centennial Conference on Nuclear Physics : Rutherford Centennial Conference on Nuclear Physics ; 08 Aug 2011-12 Aug 2011; University of Manchester. UK: Journal of Physics: Conference Series; 2012. | 2012
T.J. Procter; H. Aghaei-Khozani; J. Billowes; M. L. Bissell; F. Le Blanc; B. Cheal; T. E. Cocolios; K. T. Flanagan; H. Hori; T. Kobayashi; D. Lunney; K. M. Lynch; B. A. Marsh; G. Neyens; J. Papuga; M. M. Rajabali; S. Rothe; G.S. Simpson; A.J. Smith; H.H. Stroke; W. Vanderheijden; K. Wendt
The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for high-resolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests.
Journal of Physics G | 2011
M. Avgoulea; Yu. P. Gangrsky; K. P. Marinova; S. G. Zemlyanoi; S. Fritzsche; D Iablonskyi; C. Barbieri; Edward Simpson; P. D. Stevenson; J. Billowes; P. Campbell; B. Cheal; B. Tordoff; M. L. Bissell; D. H. Forest; M. D Gardner; G. Tungate; J. Huikari; A. Nieminen; H. Penttilä; J. Äystö
Collinear laser spectroscopy experiments with the Sc+ transition 3d4s 3D2 → 3d4p 3F3 at λ = 363.1 nm were performed on the 42–46Sc isotopic chain using an ion guide isotope separator with a cooler-buncher. Nuclear magnetic dipole and electric quadrupole moments as well as isotope shifts were determined from the hyperfine structure for five ground states and two isomers. Extensive multi-configurational Dirac–Fock calculations were performed in order to evaluate the specific mass-shift, MSMS, and field-shift, F, parameters which allowed evaluation of the charge radii trend of the Sc isotopic sequence. The charge radii obtained show systematics more like the Ti radii, which increase towards the neutron shell closure N = 20, than the symmetric parabolic curve for Ca. The changes in mean-square charge radii of the isomeric states relative to the ground states for 44Sc and 45Sc were also extracted. The charge radii difference between the ground and isomeric states of 45Sc is in agreement with the deformation effect estimated from the B(E2) measurements but is smaller than the deformation extracted from the spectroscopic quadrupole moments.
Physical Review Letters | 2013
J. Papuga; M. L. Bissell; Kim Dieter Kreim; Klaus Blaum; B. A. Brown; M. De Rydt; R.F. Garcia Ruiz; H. Heylen; M. Kowalska; R. Neugart; G. Neyens; W. Nörtershäuser; T. Otsuka; M. M. Rajabali; R. Sánchez; Yutaka Utsuno; D. T. Yordanov
The ground-state spins and magnetic moments of (49,51)K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE CERN. For 49K a ground-state spin I = 1/2 was firmly established. The observed hyperfine structure of 51K requires a spin I > 1/2 and strongly suggests I = 3/2. From its magnetic moment μ(51K) = +0.5129(22)μ(N) a spin-parity I(π) = 3/2+ with a dominant π1d(3/2)(-1) hole configuration was deduced. This establishes for the first time the reinversion of the single-particle levels and illustrates the prominent role of the residual monopole interaction for single-particle levels and shell evolution.
Physical Review C | 2015
R.F. Garcia Ruiz; M. L. Bissell; Klaus Blaum; N. Frömmgen; M. Hammen; J. D. Holt; M. Kowalska; Kim Dieter Kreim; Javier Menéndez; R. Neugart; G. Neyens; W. Nörtershäuser; F. Nowacki; J. Papuga; A. Poves; A. Schwenk; J. Simonis; D. T. Yordanov
High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the
Physics Letters B | 2014
Kim Dieter Kreim; M. L. Bissell; J. Papuga; Klaus Blaum; M. De Rydt; R.F. Garcia Ruiz; Stéphane Goriely; H. Heylen; M. Kowalska; R. Neugart; G. Neyens; W. Nörtershäuser; M. M. Rajabali; R. Sánchez Alarcón; H.H. Stroke; D. T. Yordanov
^{43-51}