M.L. Kuravsky
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.L. Kuravsky.
BMC Evolutionary Biology | 2011
M.L. Kuravsky; Vladimir V. Aleshin; Dmitrij Frishman; Vladimir I. Muronetz
BackgroundGlyceraldehyde-3-phosphate dehydrogenase (GAPD) catalyses one of the glycolytic reactions and is also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain some insights into specialization of GAPD-2 as a testis-specific protein.ResultsA dataset of GAPD sequences was assembled from public databases and used for phylogeny reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different regions of the same sequences.ConclusionsThe obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing.
Biochemistry | 2008
Yu. Yu. Shchutskaya; Yu. L. Elkina; M.L. Kuravsky; E. E. Bragina; Elena V. Schmalhausen
Glyceraldehyde-3-phosphate dehydrogenase (GAPDs) was purified from human sperms and properties of the enzyme were investigated. After sonication of sperms, the most part of GAPDs is associated with the insoluble cell fraction. Trypsin treatment results in the cleavage of part of the N-terminal domain of the enzyme yielding a soluble fragment that was purified by hydrophobic chromatography on Phenyl-Sepharose. The isolated fragment was shown to be a tetramer with molecular weight of approximately 150 kD (according to Blue Native PAGE) and composed of subunits of 40 kD (according to SDS-PAGE). The specific activity of the isolated fragment reached 374 U/mg. It is supposed that GAPDs exists in sperms as the tetrameric molecule bound to the fibrous sheath of the flagellum through the N-terminus of one or two subunits. Comparative study of the amino acid sequences of mammalian GAPDs revealed conservative cysteine residues (C21, C94, and C150) that are specific for the sperm isoenzyme and absent in the somatic isoenzyme. Residue C21 can be involved in the formation of the disulfide bond between the N-terminal domain of GAPDs and fibrous sheath proteins.
Biochimica et Biophysica Acta | 2014
M.L. Kuravsky; K.V. Barinova; Aleksandra Marakhovskaya; Mikhail A. Eldarov; Pavel I. Semenyuk; Vladimir I. Muronetz; Elena V. Schmalhausen
Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) exhibits enhanced stability compared to the somatic isoenzyme (GAPD). A comparative analysis of the structures of these isoenzymes revealed characteristic features, which could be important for the stability of GAPDS: six specific proline residues and three buried salt bridges. To evaluate the impact of these structural elements into the stability of this isoenzyme, we obtained two series of mutant GAPDS: 1) six mutants each containing a substitution of one of the specific prolines by alanine, and 2) three mutants each containing a mutation breaking one of the salt bridges. Stability of the mutants was evaluated by differential scanning calorimetry and by their resistance towards guanidine hydrochloride (GdnHCl). The most effect on thermostability was observed for the mutants P326A and P164A: the Tm values of the heat-absorption curves decreased by 6.0 and 3.3°C compared to the wild type protein, respectively. The resistance towards GdnHCl was affected most by the mutation D311N breaking the salt bridge between the catalytic and NAD(+)-binding domains: the inactivation rate constant in the presence of GdnHCl increased six-fold, and the value of GdnHCl concentration corresponding to the protein half-denaturation decreased from 1.83 to 1.35M. Besides, the mutation D311N enhanced the enzymatic activity of the protein two-fold. The results suggest that the residues P164 (β-turn), P326 (first position of α-helix), and the interdomain salt bridge D311-H124 are significant for the enhanced stability of GAPDS. The salt bridge D311-H124 enhances stability of the active site of GAPDS at the expense of the catalytic activity.
Biochemistry | 2007
M.L. Kuravsky; Vladimir I. Muronetz
The elucidation of the interdependence between structural features and functions of somatic and sperm-specific isoenzymes of glyceraldehyde-3-phosphate dehydrogenase (GAPD and GAPDS, respectively) was the goal of comparative analysis of their primary structures. GAPDS was shown to lack the sequence similar to the atypical nuclear export signal motif (NES) of the somatic isoenzyme GAPD. This finding is confirmed by experimental data on the absence of interaction between GAPDS and antibodies 6C5 recognizing the NES motif in the sequence of GAPD. The lack of NES correlates with functional peculiarities of the sperm-specific enzyme that is tightly bound to the fibrous sheath of the sperm flagellum. The sequences of the two isoenzymes were examined for the short motifs that might participate in apoptosis, endocytosis, and DNA repair. Sites of phosphorylation by different protein kinases have been revealed in both isoenzymes, and their characteristic features are discussed. These observations can serve as the basis for subsequent search for new ways of regulating the two isoenzymes.
Biochimie | 2015
M.L. Kuravsky; K.V. Barinova; R.A. Asryants; Elena V. Schmalhausen; Vladimir I. Muronetz
Catalytic properties of enzymes used in biotechnology can be improved by eliminating those regulatory mechanisms that are not absolutely required for their functioning. We exploited mammalian glyceraldehyde-3-phosphate dehydrogenase as a model protein and examined the structural basis of the NAD(+) cooperative binding exhibited by its homologous isoenzymes: the somatic enzyme (GAPD) and the recombinant sperm-specific enzyme (dN-GAPDS). Moreover, we obtained a mutant dN-GAPDS, which misses the cooperativity, but exhibits a twofold increase in the specific activity instead (92 and 45 μmol NADH/min per mg protein for the mutant and the wild type proteins, respectively). Such an effect was caused by the disruption of the interdomain salt bridge D311-H124, which is located close to the active site of the enzyme. The thermal stability of the mutant protein also increased compared to the wild type form (heat absorption peak values were 70.4 and 68.6 °C, respectively). We expect our findings to be of importance for the purposes of biotechnological applications.
Biochemical and Biophysical Research Communications | 2012
Irina A. Sevostyanova; Kseniya V. Kulikova; M.L. Kuravsky; Elena V. Schmalhausen; Vladimir I. Muronetz
Sperm-specific glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDS) is normally expressed only in sperms, but not in somatic tissues. Analysis of the expression of GAPDS mRNA in different cancer cell lines shows that the content of GAPDS mRNA is enhanced in some lines of melanoma cells. The purpose of the study was to assay melanoma cells for the expression of protein GAPDS. Three different lines of melanoma cells were investigated. By data of Western blotting, all investigated cells contain a 37-kDa fragment of GAPDS polypeptide chain, which corresponds to the enzyme GAPDS lacking N-terminal amino acid sequence that attaches the enzyme to the cytoskeleton of the sperm flagellum. The results suggest that GAPDS is expressed in melanoma cells without N-terminal domain. The immunoprecipitation of proteins from melanoma cell extracts using rabbit polyclonal antibodies against native GAPDS allowed isolation of complexes containing 37-kDa subunit of GAPDS and full-length subunit of somatic glyceraldehyde-3-phosphate dehydrogenase (GAPD). The results indicate that melanoma cells express both isoenzymes, which results in the formation of heterotetrameric complexes. Immunocytochemical staining of melanoma cells revealed native GAPDS in the cytoplasm. It is assumed that the expression of GAPDS in melanoma cells may facilitate glycolysis and prevent the induction of apoptosis.
Analytical Biochemistry | 2012
M.L. Kuravsky; Elena V. Schmalhausen; Natalia V. Pozdnyakova; Vladimir I. Muronetz
A polyclonal antiserum obtained after the immunization of a rabbit with recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase lacking in 68 N-terminal amino acid residues (dN-GAPDS) was purified using different immunosorbents with immobilized dN-GAPDS in the native or denatured states. The procedure resulted in isolation of two types of polyclonal antibodies. The first type interacted with native recombinant dN-GAPDS as well as with native human sperm-specific glyceraldehyde-3-phosphate dehydrogenase, not cross-reacting with muscle glyceraldehyde-3-phosphate dehydrogenase (GAPD). The second type interacted with both native and denatured forms of the sperm-specific proteins, exhibiting some cross-reaction with GAPD. Thus, the suggested approach allows isolation of the antibodies against conformational or linear epitopes from the same polyclonal serum.
Archives of Biochemistry and Biophysics | 2011
Irina N. Naletova; Kristina M. Popova; Mikhail A. Eldarov; M.L. Kuravsky; Elena V. Schmalhausen; Irina A. Sevostyanova; Vladimir I. Muronetz
The cytosolic chaperonin TRiC was isolated from ovine testes using ultracentrifugation and heparin-Sepharose chromatography. The molecular mass of the obtained preparation was shown to exceed 900 kDa (by Blue Native PAGE). SDS-PAGE yielded a set of bands in the range of 50-60 kDa. Electron microscopy examination revealed ring-shaped complexes with the outer diameter of 15 nm and the inner diameter of approximately 6 nm. The results suggest that the purified chaperonin is an oligomeric complex composed of two 8-membered rings. The chaperonin TRiC was shown to assist an ATP-dependent refolding of recombinant forms of sperm-specific glyceraldehyde-3-phosphate dehydrogenase, an enzyme that is expressed only in precursor cells of the sperms in the seminiferous tubules of the testes. In contrast, TRiC did not influence the refolding of muscle isoform of glyceraldehyde-3-phosphate dehydrogenase and assisted the refolding of muscle lactate dehydrogenase by an ATP-independent mechanism. The obtained results suggest that TRiC is likely to be involved in the refolding of sperm-specific proteins.
Biochemistry | 2015
Vladimir I. Muronetz; M.L. Kuravsky; K.V. Barinova; Elena V. Schmalhausen
This review is focused on the mammalian sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). GAPDS plays the major role in the production of energy required for sperm cell movement and does not perform non-glycolytic functions that are characteristic of the somatic isoenzyme of glyceraldehyde-3-phosphate dehydrogenase. The GAPDS sequence is composed of 408 amino acid residues and includes an additional N-terminal region of 72 a.a. that binds the protein to the sperm tail cytoskeleton. GAPDS is present only in the sperm cells of mammals and lizards, possibly providing them with certain evolutionary advantages in reproduction. In this review, studies concerning the problems of GAPDS isolation, its catalytic properties, and its structural features are described in detail. GAPDS is much more stable compared to the somatic isoenzyme, perhaps due to the necessity of maintaining the enzyme function in the absence of protein expression. The site-directed mutagenesis approach revealed the two GAPDS-specific proline residues, as well as three salt bridges, which seem to be the basis of the increased stability of this protein. As distinct from the somatic isoenzyme, GAPDS exhibits positive cooperativity in binding of the coenzyme NAD+. The key role in transduction of structural changes induced by NAD+ is played by the salt bridge D311–H124. Disruption of this salt bridge cancels GAPDS cooperativity and twofold increases its enzymatic activity instead. The expression of GAPDS was detected in some melanoma cells as well. Its role in the development of certain pathologies, such as cancer and neurodegenerative diseases, is discussed.
Journal of Structural Biology | 2015
Olga N. Makshakova; Pavel I. Semenyuk; M.L. Kuravsky; Elena A. Ermakova; Yuriy F. Zuev; Vladimir I. Muronetz
Tissue specific isoforms of human glyceraldehyde-3-phosphate dehydrogenase, somatic (GAPD) and sperm-specific (GAPDS), have been reported to display different levels of both stability and catalytic activity. Here we apply MD simulations to investigate molecular basis of this phenomenon. The protein is a tetramer where each subunit consists of two domains - catalytic and NAD-binding one. We demonstrated key residues responsible for intersubunit and interdomain interactions. Effect of several residues was studied by point mutations. Overall we considered three mutations (Glu96Gln, Glu244Gln and Asp311Asn) disrupting GAPDS-specific salt bridges. Comparison of calculated interaction energies with calorimetric enthalpies confirmed that intersubunit interactions were responsible for enhanced thermostability of GAPDS whereas interdomain interactions had indirect influence on intersubunit contacts. Mutation Asp311Asn was around 10Å far from the active center and corresponded to the closest natural substitution in the isoenzymes. MD simulations revealed that this residue had slight interaction with catalytic residues but influenced the hydrogen bond net and dynamics in active site. These effects can be responsible for a strong influence of this residue on catalytic activity. Overall, our results provide new insight into glyceraldehyde-3-phosphate dehydrogenase structure-function relationships and can be used for the engineering of mutant proteins with modified properties and for development of new inhibitors with indirect influence on the catalytic site.