Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Laiolo is active.

Publication


Featured researches published by M. Laiolo.


Geological Society, London, Special Publications | 2008

Probing Stromboli volcano from the mantle to paroxysmal eruptions

C. Cigolini; M. Laiolo; Sara Bertolino

Abstract We investigated the plumbing system of Stromboli volcano from the upper mantle to the surface. Thermobarometric estimates indicate that the deeper detected part of the plumbing system is located in the upper mantle, at approximately 34–24 km depth where, during their ascent, primitive Stromboli basalts (HKCA to shoshonitic) interact with peridotitic materials. In this region magma flow is probably channelled along fracture zones that may converge into a feeder dyke that crosscuts the Moho at about 17 km depth. During their ascent, basaltic magmas will interact with lower crust materials represented by cumulates of earlier Stromboli-type basalts at 13–10 km depth. This zone is also the section of the plumbing system where the feeder dyke is entering the chamber. Thermobarometric estimates, obtained by constructing a grid of selected reactions, indicate that current primitive Stromboli basalts equilibrate at 0.3–0.15 GPa and temperatures approaching 1200 °C, and progressively crystallize and degas before being erupted. Crystal size distributions on lavas and juvenile tephra erupted in 2002–2003 give very variable residence times. Based on average bubble distances, the estimated times for the exsolution of the gaseous phases range from 2–7 days to 45 min for the lavas and scorias, down to about 15 h to 12 min for the pumices erupted during paroxysmal explosions. Estimated syneruptive viscosities range from 102 Pa s for the anhydrous basaltic pumices at 1200 °C, to 103–104 Pa s for lavas approaching their effusion temperatures (1100–1150 °C). In turn, viscosities for the hydrous basaltic melt that led to the formation of the basaltic pumices may be around 10 Pa s or lower. In the light of the above, we discuss the possible shapes and volumes of Stromboli magma chamber by considering a sphere, an ellipsoid (geometrically concordant with the regional stress distribution) and a feeder dyke, the last two being more likely. In the light of volcanological, structural and geophysical data on conduit thickness, we propose an alternative model that takes into account the volumes of recently erupted lavas. This model consists of a convective ellipsoidal magma chamber ‘injected’ by an active feeder dike of undegassed magma of higher temperature, lower density and lower viscosity. This dyke will evolve into a magma column inside the chamber and will separate the reservoir into two lateral, nearly symmetric convective regions. Crystallization would occur preferentially in the proximity of the wallrocks, particularly where the chamber is entering the conduit. The onset of paroxysmal explosions during major effusive cycles may be explained by a drastic increase in the intrusion rates at the base of the chamber that will produce a progressive inflation of the magma column dynamically transferred to the chamber walls. The ceasing of ‘anomalous’ intrusion rates at the base of the chamber, coupled with higher discharge rates, will progressively depressurize the chamber to a critical threshold, until the stress transferred to the walls is dynamically released: at this point the walls themselves will undergo a nearly instantaneous elastic rebound and contract in the attempt to recover their original pre-eruptive geometry. These dynamics will squeeze up portions of the undegassed magma column, triggering a paroxysmal explosion with the ejection of ‘golden pumices’.


Geological Society, London, Special Publications | 2016

Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system

D. Coppola; M. Laiolo; C. Cigolini; D. Delle Donne; Maurizio Ripepe

Abstract We describe a new volcanic hotspot detection system, named Middle InfraRed Observation of Volcanic Activity (MIROVA), based on the analysis of infrared data acquired by the Moderate Resolution Imaging Spectroradiometer sensor (MODIS). MIROVA uses the middle infrared radiation (MIR), measured by MODIS, in order to detect and measure the heat radiation deriving from volcanic activity. The algorithm combines spectral and spatial principles, allowing the detection of heat sources from 1 megawatt (MW) to more than 10 gigawatt (GW). This provides a unique opportunity to: (i) recognize small-scale variations in thermal output that may precede the onset of effusive activity; (ii) track the advance of large lava flows; (iii) estimate lava discharge rates; (iv) identify distinct effusive trends; and, lastly, (v) follow the cooling process of voluminous lava bodies for several months. Here we show the results obtained from data sets spanning 14 years recorded at the Stromboli and Mt Etna volcanoes, Italy, and we investigate the above aspects at these two persistently active volcanoes. Finally, we describe how the algorithm has been implemented within an operational near-real-time processing chain that enables the MIROVA system to provide data and infrared maps within 1–4 h of the satellite overpass.


Journal of Environmental Radioactivity | 2012

Developments in real-time radon monitoring at Stromboli volcano

M. Laiolo; C. Cigolini; D. Coppola; D. Piscopo

We present the results of one year of continuous radon monitoring at Stromboli volcano collected at two automated real-time stations. These were deployed on the NE flank (at 520 m a.s.l.) and within the summit area (900 m a.s.l.). Higher daily emissions at the lower station approached 4,200 Bq/m³, with bulk averages around 1,800 (±980) Bq/m³; whereas the summit station reached peak values of 23,000 Bq/m³ and bulk averages of 12,500 Bq/m³ (±4,000). Negative correlations are observed between radon emissions, soil temperature and, to a lesser extent, atmospheric pressure. In contrast, increases in radon concentrations were observed during periods of higher rainfall conditions. Therefore, trends in radon concentrations may be decoupled from those of other geochemical parameters (CO₂ fluxes and CO₂/SO₂ plume ratios) during periods of heavy to moderate rainfalls. Multiple Linear Regression statistics (including the effects of soil temperature, atmospheric pressure and tidal forces) led us to compute the residuals given by the difference of measured and calculated ²²²Rn concentrations. The cross-check between the daily measured radon activities and the absolute variations in radon residuals, for the data collected at the summit station, give us the opportunity to suggest a methodological approach that can be used in the attempt of predicting some major changes in volcanic activity.


Geology | 2017

Modelling satellite-derived magma discharge to explain caldera collapse

D. Coppola; Maurizio Ripepe; M. Laiolo; C. Cigolini

Many effusive eruptions are characterized by effusion rates that decay exponentially with time, a trend which is generally ascribed to elastic relaxation of a deep magma chamber. Thermal emissions, detected by satellite during the A.D. 2014–2015 Barðarbunga-Holuhraun eruption (Iceland), indicate that the volume of the erupted magma and effusion rates followed an overall exponential trend that fits the observed major subsidence of the Barðarbunga caldera floor. This trend continued until a critical flow rate was reached. Hence, the subsidence slowed down and the eruption rapidly ceased, reflecting the ultimate closure of the magma path. We present a model of inelastic magma withdrawal that very closely reproduces all the observed phenomena and provides new insights into the caldera collapses and the driving pressure of other effusive eruptions.


Bulletin of Volcanology | 2016

Tracking dynamics of magma migration in open-conduit systems

Sébastien Valade; Giorgio Lacanna; D. Coppola; M. Laiolo; Marco Pistolesi; Dario Delle Donne; Riccardo Genco; Emanuele Marchetti; Giacomo Ulivieri; Carmine Allocca; C. Cigolini; Takeshi Nishimura; Pasquale Poggi; Maurizio Ripepe

Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input rate. During the 2014 flank eruption of Stromboli, this magma input preceded the effusive eruption by several months. When the new lateral effusive vent opened on the Sciara del Fuoco slope, the effusion was accompanied by a large ground deflation, a deepening of the VLP seismic source, and the cessation of summit explosive activity. Such observations suggest the drainage of a superficial magma reservoir confined between the crater terrace and the effusive vent. We show how this model successfully reproduces the measured rate of effusion, the observed rate of ground deflation, and the deepening of the VLP seismic source. This study also demonstrates the ability of the geophysical network to detect superficial magma recharge within an open-conduit system and to track magma drainage during the effusive crisis, with a great impact on hazard assessment.


Journal of remote sensing | 2014

Hot-spot detection and characterization of strombolian activity from MODIS infrared data

D. Coppola; M. Laiolo; D. Delle Donne; Maurizio Ripepe; C. Cigolini

Identifying and characterizing strombolian activity from space is a challenging task for satellite-based infrared systems. Stromboli volcano is a natural laboratory that offers a unique opportunity for refining thermal remote-sensing applications that involve transient phenomena and small to moderate hot-spots. A new simple and fast algorithm gave us the opportunity to revisit the MODIS-derived thermal output at Stromboli volcano over the last 13 years. The new algorithm includes both night-time and daytime data and shows high performance with the detection of small-amplitude thermal anomalies (<1 MW), as well as a low occurrence of false alerts (<4%). Here, we show that the statistical distribution of volcanic radiative power (VRP; in Watts) is consistent with the detection of variable activity regimes that we subdivided into five levels of thermal activity: Very Low (VRP < 1 MW), Low (1 MW < VRP < 10 MW), Moderate (10 MW < VRP < 100 MW), High (100 MW < VRP < 1000 MW), and Very High (VRP > 1000 MW). The ‘Low’ and ‘Moderate’ thermal levels are associated with strombolian activity and reflect fluctuations of the magma level within the conduit feeding the activity at the surface. The ‘High’ level of thermal output represents the bulk thermal emissions during periods of effusive activity. The highest level (‘Very High’) was reached only during the onset of flank eruptions (28 December 2002 and 27 February 2007). We found that the retrieved thermal regimes are in general agreement with the explosive levels evaluated at Stromboli since 2005, and their correlation has been shown to be dependent on the observed activity (i.e. eruption onset, lateral flank effusion, summit overflows, strombolian activity). Our results suggest that remotely sensed thermal data provide a reliable tool for monitoring volcanic activity at Stromboli volcano.


Geological Society, London, Special Publications | 2015

Revisiting the last major eruptions at Stromboli volcano: inferences on the role of volatiles during magma storage and decompression

C. Cigolini; M. Laiolo; D. Coppola

Abstract Stromboli is a unique open conduit volcano and a natural laboratory for investigating how volatiles migrate and concentrate under dynamic conditions. Fluid phases are involved in magma decompression and pressurization, modulate Strombolian activity and govern magma rise and fragmentation processes. Here, we have revisited the available data on the last two major eruptions at Stromboli volcano and concentrated our analysis on the 2007 eruption. First, we analysed petrological-geochemical data to assess equilibrium conditions by using standard thermobarometry; we then used a grid of selected reactions which involve solid-melt-fluid equilibria to better constrain the P–T regimes that adequately describe our system. Primitive hydrous basaltic melts, reported in literature and preserved as melt inclusions in olivine (with 2.3–3.8 wt% of H2O and 890–1590 ppm CO2), are in equilibrium with forsteritic olivine and a diopsidic clinopyroxene at average pressures of 260 (±47) MPa for temperatures approaching 1170 (±17) °C and calculated (mole fraction of CO2 within the melt) in the range 0.60–0.76. Ca-rich or ultracalcic melts are regarded as the result of decompression along a steep adiabatic and/or isothermal curve. During this process the magma will cross-cut the stability field of diopside and enter the liquidus field. The earlier crystallized diopside is destabilized and reacts with the coexisting liquid phase leading to the formation of ultracalcic melts. Ejected golden pumices (with 2–3 wt% H2O) are in equilibrium with Ca-pyroxene, forsteritic olivine and anorthitic plagioclase at 150–220 MPa and temperatures of 1120–1150 °C. Evolved melt inclusions (substantially degassed) in less magnesian olivine (c. Fo70) of the scorias show average equilibration pressures of 78 (±20) MPa and temperatures of 1138 (±14) °C. In summary, the higher P–T regimes associated with the origin of primitive melt inclusions are representative of the base of the chamber, where the ferromagnesian phases may crystallize and cumulate. The magma with a bulk composition typical of the pumices is stored in the middle and main part of the chamber (likely its axial sector) and these materials are erupted during paroxysmal and, more rarely, major explosions. Finally, more evolved melt inclusions found in the olivine of the scorias are indicative of crystallization within the conduit or its root zone connected to the upper part of the chamber. Pure extensional regimes and recent geophysical data suggest the existence of a prolate ellipsoidal magma chamber below Stromboli. To constrain its volume we estimated the magma volumes associated with SO2 degassing (during the 2007 major eruption) by applying a refined petrological model that allowed us to estimate the magma fluxes in the subvolcanic region (i.e. the magma flux entering the degassing zone). The long-term trend of this magma flux follows an overall exponential decay, typical of pressurized magmatic systems, and indicates that magma rise was accompanied and followed by slow decompression. This trend was shown to be consistent with release of elastic strain accumulated either by pressurization of the rocks surrounding the magma reservoir, by pressurization of the magma itself or both. By analysing the reservoir elastic response during magma decompression, we found that the current Stromboli magma chamber volume may be adequately constrained to 1–2 km3.


Geochemistry Geophysics Geosystems | 2018

Tracking Formation of a Lava Lake From Ground and Space: Masaya Volcano (Nicaragua), 2014–2017

Alessandro Aiuppa; J. Maarten de Moor; Santiago Arellano; D. Coppola; Vincenzo Francofonte; Bo Galle; G. Giudice; Marco Liuzzo; Elvis Mendoza; Armando Saballos; Giancarlo Tamburello; Angelo Battaglia; M. Bitetto; Sergio Gurrieri; M. Laiolo; Andrea Mastrolia; Roberto Moretti

A vigorously degassing lava lake appeared inside the Santiago pit crater of Masaya volcano (Nicaragua) in December 2015, after years of degassing with no (or minor) incandescence. Here, we present an unprecedented-long (3 years) and continuous volcanic gas record that instrumentally characterizes the (re)activation of the lava-lake. Our results show that, before appearance of the lake, the volcanic gas plume composition became unusually CO2-rich, as testified by high CO2/SO2 ratios (mean, 12.2±6.3) and low H2O/CO2 ratios (mean, 2.3±1.3). The volcanic CO2 flux also peaked in November 2015 (mean, 81.3±40.6 kg/s; maximum, 247 kg/s). Using results of magma degassing models and budgets, we interpret this elevated CO2 degassing as sourced by degassing of a volatile-rich fast-convecting (3.6-5.2 m3·s-1) magma, supplying CO2-rich gas bubbles from minimum equivalent depths of 0.36-1.4 km. We propose this elevated gas bubbles supply destabilized the shallow (<1 km) Masaya magma reservoir, leading to upward migration of vesicular (buoyant) resident magma, and ultimately to (re)formation of the lava lake. At onset of lava lake activity on 11 December 2015 (constrained by satellite-based (MODIS) thermal observations), the gas emissions transitioned to more SO2-rich composition, and the SO2 flux increased by a factor ~40 % (11.4±5.2 kg/s) relative to background degassing (8.0 kg/s), confirming faster than normal (4.4 vs. ~3 m3·s-1) shallow magma convection. Elevated shallow magma circulation is also supported by gradual increase in irradiated thermal energy, captured by MODIS, from which we calculate that 0.4-0.8 m3·s-1 of magma have been surface-emplaced since December 2015.


Scientific Reports | 2017

Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes

Maurizio Ripepe; Marco Pistolesi; D. Coppola; Dario Delle Donne; Riccardo Genco; Giorgio Lacanna; M. Laiolo; Emanuele Marchetti; Giacomo Ulivieri; Sã©bastien Valade

Effusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we show how the drastic transition from effusive to violent explosions can be related to different decompression rates. We suggest that a gravity-driven model can shed light on similar cases of lateral effusive eruptions in other volcanic systems and can provide evidence of the roles of slow decompression rates in triggering violent paroxysmal explosive eruptions, which occasionally punctuate the effusive phases at basaltic volcanoes.


Geological Society, London, Special Publications | 2016

Radon surveys and monitoring at active volcanoes: learning from Vesuvius, Stromboli, La Soufrière and Villarrica

C. Cigolini; M. Laiolo; D. Coppola; C. Trovato; G. Borgogno

Abstract Understanding the behaviour of fluids in hydrothermal systems is a key factor in volcano monitoring. Measuring gas emissions in volcanic areas is strategic for detecting and interpreting precursory signals of variations in volcanic activity. The role of radon as a potential precursor of earthquakes has been extensively debated. However, radon anomalies appear to be better suited to forecast eruptive episodes as we know the loci of volcanic eruptions and we can follow the evolution of volcanic activity. Radon mapping is an effective tool in assessing diffuse and concentrated degassing at the surface. We hereby summarize the in-soil radon emissions collected worldwide and further discuss a collection of data on our key targets. These are closed-conduit and open-conduit volcanoes: Vesuvius (Italy) and La Soufrière (Guadeloupe, Lesser Antilles), Stromboli (Italy) and Villarrica (Chile), respectively. In all the above volcanoes, faults and fracture systems control radon degassing. Automatic and real-time measurements help us to detect major changes in volcanic activity. We present and discuss the radon time series associated with the last effusive eruption at Stromboli. Spectral analyses reveal diurnal and semi-diurnal cycles being probably modulated by atmospheric variations. Multiple linear regression (MLR) analyses have been performed by filtering the radon signals from the effects of local environmental parameters. The residuals do not show particular variations or precursory peaks as the gases have been released from this open-conduit volcano before the onset of the effusive phase (7 August 2014). It is finally emphasized that radon is not the sole precursor, and we should also rely on other geochemical and geophysical parameters. In this perspective, we propose a methodological procedure that can contribute to improving volcano surveillance in an attempt to mitigate volcanic risk.

Collaboration


Dive into the M. Laiolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge