M. Le Tacon
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Le Tacon.
Science | 2012
G. Ghiringhelli; M. Le Tacon; M. Minola; S. Blanco-Canosa; C. Mazzoli; N. B. Brookes; G. M. De Luca; A. Frano; D. G. Hawthorn; F. He; T. Loew; M. Moretti Sala; D. C. Peets; M. Salluzzo; E. Schierle; R. Sutarto; G. A. Sawatzky; E. Weschke; B. Keimer; L. Braicovich
A State of High Tc Superconductivity There are strong indications that high-temperature superconductivity in the cuprates is formed amid competing orders, but only two have been observed unambiguously. The so-called stripe order has been observed in a Lanthanum-based cuprate family and consists of coexisting charge-and-spin modulations and occurs at a characteristic dopant concentration in which the critical temperature Tc has a dip. Now, Ghiringhelli et al. (p. 821, published online 12 July; see the Perspective by Tranquada) have used resonant inelastic x-ray scattering to uncover a related but apparently two-dimensional charge order in the much cleaner YBCO cuprate family. The charge fluctuations were not commensurate with the lattice and did not originate in the characteristic oxygen chains of YBCO. The order appeared only in a narrow interval of dopant concentrations and competed with superconductivity, which provides a natural explanation for a plateau in Tc observed in the same range. Scattering experiments uncover an order competing with superconductivity in a cuprate family. The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba2Cu3O6+x, with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (Tc); further cooling below Tc abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.
Science | 2014
Riccardo Comin; A. Frano; Michael Manchun Yee; Yoshiyuki Yoshida; H. Eisaki; E. Schierle; E. Weschke; R. Sutarto; F. He; Anjan Soumyanarayanan; Yang He; M. Le Tacon; I. S. Elfimov; Jennifer Hoffman; G. A. Sawatzky; B. Keimer; A. Damascelli
The understanding of the origin of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. We combined resonant x-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, and in momentum and real space within one cuprate family, Bi 2Sr 2−xLa xCuO 6+δ. The observed wave vectors rule out simple antinodal nesting in the single-particle limit but match well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations of electronic order in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates and uncover its intimate connection to the pseudogap regime. Surface and bulk measurements in bismuth-based cuprates agree and indicate a short-range charge order. [Also see Perspective by Morr] Copper-Oxide Superconductors Copper-oxide superconductors have a complex electronic structure. A charge density order has been observed in two cuprate families; however, it has been unclear whether such an order exists in Bi-based compounds (see the Perspective by Morr). Comin et al. (p. 390, published online 19 December) and da Silva Neto et al. (p. 393, published online 19 December) address this question in single-layer and double-layer Bibased cuprates, respectively. For both families of materials, surface measurements by scanning tunneling spectroscopy agree with bulk measurements obtained through resonant elastic x-ray scattering, which suggests the formation of short-range correlations that modulate the charge density of the carriers over a range of dopings. Thus, charge ordering may represent a common characteristic of the major cuprate families.
Nature Physics | 2011
M. Le Tacon; G. Ghiringhelli; Jiří Chaloupka; M. Moretti Sala; V. Hinkov; M. W. Haverkort; M. Minola; M. Bakr; K. J. Zhou; S. Blanco-Canosa; Claude Monney; Y. T. Song; G. L. Sun; C.T. Lin; G. M. De Luca; M. Salluzzo; Giniyat Khaliullin; Thorsten Schmitt; L. Braicovich; B. Keimer
In the copper oxide superconductors, spin fluctuations might be involved in the electronic pairing mechanism. The case for such magnetically mediated superconductivity is now strengthened by the discovery of high-energy magnetic excitations that are not affected by chemical doping levels within several cuprates.
Nature Physics | 2006
M. Le Tacon; A. Sacuto; Antoine Georges; Gabriel Kotliar; Y. Gallais; D. Colson; A. Forget
The superconducting temperature Tc of hole-doped high-temperature superconductors has a dome-like shape as a function of hole concentration, with a maximum Tc at ‘optimal’ doping. On the underdoped side, the superconducting state is often described in terms of one energy scale, associated with the maximum of the d-wave gap (at the antinodes), which increases as the doping decreases. Here, we report electronic Raman scattering experiments that show a second energy scale in the gap function: the slope of the gap at the nodes, which decreases with decreasing doping. Our measurements also reveal two distinct quasiparticle dynamics; electronic coherence persists down to low doping levels at the nodes, whereas antinodal quasiparticles become incoherent. Using a sum-rule, we find that the low-frequency Raman response and the temperature dependence of the superfluid density, both controlled by nodal excitations, behave in a qualitatively similar manner with doping variation.
Nature Communications | 2014
Wojciech Tabis; Y. Li; M. Le Tacon; L. Braicovich; A. Kreyssig; M. Minola; G. Dellea; E. Weschke; M. J. Veit; M. Ramazanoglu; A. I. Goldman; Thorsten Schmitt; G. Ghiringhelli; Neven Barišić; Mun Chan; Chelsey Dorow; Guichuan Yu; X. Zhao; B. Keimer; M. Greven
Charge-density-wave (CDW) correlations within the quintessential CuO
Physical Review B | 2014
S. Blanco-Canosa; A. Frano; E. Schierle; J. Porras; T. Loew; M. Minola; M. Bluschke; E. Weschke; B. Keimer; M. Le Tacon
_2
Nature Physics | 2014
M. Le Tacon; A. Bosak; S. M. Souliou; G. Dellea; T. Loew; Rolf Heid; K. P. Bohnen; G. Ghiringhelli; M. Krisch; B. Keimer
planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa
Physical Review B | 2014
S. Kaiser; C. R. Hunt; D. Nicoletti; Wanzheng Hu; Isabella Gierz; Haiyun Liu; M. Le Tacon; T. Loew; D. Haug; B. Keimer; Andrea Cavalleri
_2
Physical Review B | 2013
M. Le Tacon; M. Minola; D. C. Peets; M. Moretti Sala; S. Blanco-Canosa; V. Hinkov; R. Liang; D. A. Bonn; W. N. Hardy; C.T. Lin; Thorsten Schmitt; L. Braicovich; G. Ghiringhelli; B. Keimer
Cu
Physical Review B | 2008
William Guyard; M. Le Tacon; M. Cazayous; A. Sacuto; Antoine Georges; D. Colson; A. Forget
_3