M. Ligges
University of Duisburg-Essen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Ligges.
Applied Physics Letters | 2009
M. Ligges; Ivan Rajkovic; Ping Zhou; O. Posth; C. Hassel; G. Dumpich; D. von der Linde
We use ultrafast electron diffraction to study lattice heating of 20nm noble metal films after femtosecond optical excitation with moderate excitation fluences. Using the Debye–Waller effect, the rise times of the lattice temperature were measured to be 1.1ps in copper (5.9mJ∕cm2 incident fluence) and 4.7ps in gold (0.9mJ∕cm2).
Nature | 2017
T. Frigge; B. Hafke; T. Witte; B. Krenzer; C. Streubühr; A. Samad Syed; V. Mikšić Trontl; I. Avigo; Ping Zhou; M. Ligges; D. von der Linde; Uwe Bovensiepen; M. Horn-von Hoegen; Stefan Martin Wippermann; A. Lücke; S. Sanna; Uwe Gerstmann; W. G. Schmidt
Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In–In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.
Journal of Physics: Condensed Matter | 2013
I. Avigo; Rocio Cortés; L. Rettig; S. Thirupathaiah; H. S. Jeevan; P. Gegenwart; Thomas Wolf; M. Ligges; Martin Wolf; J. Fink; Uwe Bovensiepen
We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe(2)As(2) and optimally doped BaFe(1.85)Co(0.15)As(2) near the Γ point to optical excitation by an infrared femtosecond laser pulse. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as a combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The responses of the three different materials are very similar. In the coherent response we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A(1g) mode, the other two modes require a discussion in comparison to the literature. Employing a transient three temperature model we deduce from the transient evolution of the electron distribution a rather weak, momentum-averaged electron-phonon coupling quantified by values for λ between 30 and 70 meV(2). The chemical potential is found to present pronounced transient changes reaching a maximum of 15 meV about 0.6 ps after optical excitation and is modulated by the coherent phonons. This change in the chemical potential is particularly strong in a multiband system like the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electron density of states close to the equilibrium chemical potential.
Nature Communications | 2016
J. D. Rameau; S. Freutel; A. F. Kemper; Michael Sentef; J. K. Freericks; I. Avigo; M. Ligges; L. Rettig; Yoshiyuki Yoshida; H. Eisaki; John Schneeloch; Ruidan Zhong; Z. J. Xu; Genda Gu; P. D. Johnson; Uwe Bovensiepen
In complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can be used to separate electron–boson interactions from electron–electron interactions. We demonstrate a quantitative analysis of a well-defined electron–boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.In complex materials various interactions play important roles in determining the material properties. Angle Resolved Photoelectron Spectroscopy (ARPES) has been used to study these processes by resolving the complex single particle self energy Σ(E) and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self energy often leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) and show how measuring the population dynamics using tr-ARPES can be used to separate electron-boson interactions from electron-electron interactions. We demonstrate the analysis of a well-defined electron-boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+xcharacterized by an excited population decay time that maps directly to a discrete component of the equilibrium self energy not readily isolated by static ARPES experiments.
Applied Physics Letters | 2014
C. Streubühr; Annika Kalus; Ping Zhou; M. Ligges; A. Hanisch-Blicharski; M. Kammler; Uwe Bovensiepen; M. Horn-von Hoegen; D. von der Linde
From measurements of the transient Debye-Waller effect in Bismuth, we determine the buildup time of the random atomic motion resulting from the electronic relaxation after short pulse laser excitation. The surface sensitive reflection high energy electron diffraction and transmission electron diffraction yield a time constant of about 12 ps and 3 ps, respectively. The different energy transfer rates indicate relatively weak coupling between bulk and surface vibrational modes.
Journal of Applied Physics | 2011
M. Ligges; Ivan Rajkovic; C. Streubühr; Thorsten Brazda; Ping Zhou; O. Posth; C. Hassel; G. Dumpich; Dietrich von der Linde
We discuss the observation of a transient (000)-order attenuation in time-resolved transmission electron diffraction experiments. It is shown that this effect causes a decrease of the diffraction intensity of all higher diffraction orders. This effect is not unique to specific materials as it was observed in thin Au, Ag and Cu films.
Applied Physics Letters | 2008
T. Payer; Ivan Rajkovic; M. Ligges; D. von der Linde; M. Horn-von Hoegen; F.-J. Meyer zu Heringdorf
An ex situ cleaning and etching technique was applied to NaCl single crystals to prepare atomically flat and clean NaCl surfaces. These were used as substrates for molecular beam epitaxial growth of ultrathin continuous Bi(111) films. The high film quality—as studied with low energy electron diffraction, atomic force microscopy, and transmission electron diffraction—is attributed to the commensurate 10:7 ratio of the lattice constants. Dissolving the NaCl substrates in water allows the fabrication of freestanding 20 nm thin Bi(111) membranes of centimeter size.
Physica Status Solidi B-basic Solid State Physics | 2017
I. Avigo; S. Thirupathaiah; E. D. L. Rienks; L. Rettig; A. Charnukha; M. Ligges; Rocia Cortés; Jayita Nayak; H. S. Jeevan; Th. Wolf; Y. Huang; S. Wurmehl; M. I. Sturza; Philipp Gegenwart; M. S. Golden; L. X. Yang; K. Rossnagel; M. Bauer; Bernd Büchner; Matthias Vojta; Martin Wolf; Claudia Felser; J. Fink; Uwe Bovensiepen
In this article, we review our angle- and time-resolved photoemission studies (ARPES and trARPES) on various ferropnictides. In the ARPES studies, we focus first on the band structure as a function of control parameters. We find near optimally doped compounds a Lifshitz transition of hole/electron pocket vanishing type. Second, we investigated the inelastic scattering rates as a function of the control parameter. In contrast to the heavily discussed quantum critical scenario, we find no enhancement of the scattering rate near optimally doping. Correlation effects which show up by the non-Fermi-liquid behavior of the scattering rates, together with the Lifshitz transition offer a new explanation for the strange normal state properties and suggests an interpolating superconducting state between BCS and BE condensation. Adding femtosecond time resolution to ARPES provides complementary information on electron and lattice dynamics. We report on the response of the chemical potential by a collective periodic variation coupled to coherent optical phonons in combination with incoherent electron and phonon dynamics described by a three temperature heat bath model. We quantify electron phonon coupling in terms of 2 and show that the analysis of the electron excess energy relaxation is a robust approach. The spin density wave ordering leads to a pronounced momentum dependent relaxation dynamics. In the vicinity of kF, hot electrons dissipate their energy by electron-phonon coupling with a characteristic time constant of 200fs. Electrons at the center of the hole pocket exhibit a four time slower relaxation which is explained by spin-dependent dynamics with its smaller relaxation phase space. This finding has implications beyond the material class of Fe-pnictides because it establishes experimental access to spin-dependent dynamics in materials with spin density waves
Journal of Physics: Condensed Matter | 2014
M. Ligges; Sandhofer M; Sklyadneva Iy; Heid R; Bohnen Kp; S. Freutel; L. Rettig; Zhou P; P. M. Echenique; E. V. Chulkov; Uwe Bovensiepen
The electron-phonon coupling parameters in the vicinity of the Γ point, λ(Γ), for electronic quantum well states in epitaxial lead films on a Si(1 1 1) substrate are measured using 5, 7 and 12 ML films and femtosecond laser photoemission spectroscopy. The λ (Γ) values in the range of 0.6-0.9 were obtained by temperature-dependent line width analysis of occupied quantum well states and found to be considerably smaller than the momentum averaged electron-phonon coupling at the Fermi level of bulk lead, (λ = 1.1-1.7). The results are compared to density functional theory calculations of the lead films with and without interfacial stress. It is shown that the discrepancy can not be explained by means of confinement effects or simple structural modifications of the Pb films and, thus, is attributed to the influence of the substrate on the Pb electronic and vibrational structures.
Structural Dynamics | 2017
Klaus Sokolowski-Tinten; Xiaozhe Shen; Qiang Zheng; T. Chase; Ryan Coffee; M. Jerman; Renkai Li; M. Ligges; Igor Makasyuk; M. Z. Mo; A. H. Reid; B. Rethfeld; T. Vecchione; Stephen Weathersby; Hermann A. Dürr; Xijie Wang
We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.