Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M Lin is active.

Publication


Featured researches published by M Lin.


Medical Physics | 2012

4D patient dose reconstruction using online measured EPID cine images for lung SBRT treatment validation

M Lin; J Li; Lu Wang; S Koren; Jiajing Fan; Eugene Forkal; C.-M. Ma

PURPOSE This study aims to develop an EPID-guided 4D patient dose reconstruction framework and to investigate its feasibility for lung SBRT treatment validation. METHODS Both the beam apertures and tumor movements were detected based on the continuously acquired EPID images during the treatment. Instead of directly using the transit photon fluence measured by the EPID, this method reconstructed the entrance fluence with the measured beam apertures and the delivered MUs. The entrance fluence distributions were sorted into their corresponding phases based on the detected tumor motion pattern and then accumulated for each phase. Together with the in-room 4DCT taken before every treatment to consider the interfractional-motion, the entrance fluence was then used for the patient dose calculation. Deformable registration was performed to sum up the phase doses for final treatment assessment. The feasibility of using the transit EPID images for entrance fluence reconstruction was evaluated against EPID in-air measurements. The accuracy of 3D- and 4D-dose reconstruction was validated by experiments with a motor-driven cylindrical diode array for six clinical-SBRT plans. RESULTS The average difference between the measured and reconstructed fluence maps was within 0.16%. The reconstructed 3D-dose showed a less than 1.4% difference for the CAX-dose and at least a 98.3% gamma-passing-rate (2%∕2 mm) for the peripheral dose. Distorted dose distributions were observed in the measurement with the moving phantom. The comparison between the measured and the reconstructed 4D-dose without considering temporal information failed the gamma-evaluation for most cases. In contrast, when temporal information was considered, the dose distortion phenomena were successfully represented in the reconstructed dose (97.6%-99.7% gamma-passing rate). CONCLUSIONS The proposed method considered uncertainties of the beam delivery system, the interfractional- and intrafractional-motion, and the interplay effect. The experimental validation demonstrates that this method is practical and accurate for online or offline SBRT patient dose verification.


Medical Physics | 2009

Measurement‐based Monte Carlo dose calculation system for IMRT pretreatment and on‐line transit dose verifications

M Lin; Tsi-Chian Chao; Chung-Chi Lee; C.J. Tung; Chie-Yi Yeh; Ji-Hong Hong

The aim of this study was to develop a dose simulation system based on portal dosimetry measurements and the BEAM Monte Carlo code for intensity-modulated (IM) radiotherapy dose verification. This measurement-based Monte Carlo (MBMC) system can perform, within one systematic calculation, both pretreatment and on-line transit dose verifications. BEAMnrc and DOSXYZnrc 2006 were used to simulate radiation transport from the treatment head, through the patient, to the plane of the aS500 electronic portal imaging device (EPID). In order to represent the nonuniform fluence distribution of an IM field within the MBMC simulation, an EPID-measured efficiency map was used to redistribute particle weightings of the simulated phase space distribution of an open field at a plane above a patient/phantom. This efficiency map was obtained by dividing the measured energy fluence distribution of an IM field to that of an open field at the EPID plane. The simulated dose distribution at the midplane of a homogeneous polystyrene phantom was compared to the corresponding distribution obtained from the Eclipse treatment planning system (TPS) for pretreatment verification. It also generated a simulated transit dose distribution to serve as the on-line verification reference for comparison to that measured by the EPID. Two head-and-neck (NPC1 and NPC2) and one prostate cancer fields were tested in this study. To validate the accuracy of the MBMC system, film dosimetry was performed and served as the dosimetry reference. Excellent agreement between the film dosimetry and the MBMC simulation was obtained for pretreatment verification. For all three cases tested, gamma evaluation with 3%/3 mm criteria showed a high pass percentage (> 99.7%) within the area in which the dose was greater than 30% of the maximum dose. In contrast to the TPS, the MBMC system was able to preserve multileaf collimator delivery effects such as the tongue-and-groove effect and interleaf leakage. In the NPC1 field, the TPS showed 16.5% overdose due to the tongue-and-groove effect and 14.6% overdose due to improper leaf stepping. Similarly, in the NPC2 field, the TPS showed 14.1% overdose due to the tongue-and-groove effect and 8.9% overdose due to improper leaf stepping. In the prostate cancer field, the TPS showed 6.8% overdose due to improper leaf stepping. No tongue-and-groove effect was observed for this field. For transit dose verification, agreements among the EPID measurement, the film dosimetry, and the MBMC system were also excellent with a minimum gamma pass percentage of 99.6%.


Journal of Applied Clinical Medical Physics | 2013

Measurement comparison and Monte Carlo analysis for volumetric-modulated arc therapy (VMAT) delivery verification using the ArcCHECK dosimetry system

M Lin; S Koren; I Veltchev; J Li; Lu Wang; Robert A. Price; C.-M. Ma

The objective of this study is to validate the capabilities of a cylindrical diode array system for volumetric‐modulated arc therapy (VMAT) treatment quality assurance (QA). The VMAT plans were generated by the Eclipse treatment planning system (TPS) with the analytical anisotropic algorithm (AAA) for dose calculation. An in‐house Monte Carlo (MC) code was utilized as a validation tool for the TPS calculations and the ArcCHECK measurements. The megavoltage computed tomography (MVCT) of the ArcCHECK system was adopted for the geometry reconstruction in the TPS and for MC simulations. A 10×10 cm2 open field validation was performed for both the 6 and 10 MV photon beams to validate the absolute dose calibration of the ArcCHECK system and also the TPS dose calculations for this system. The impact of the angular dependency on noncoplanar deliveries was investigated with a series of 10×10 cm2 fields delivered with couch rotation 0° to 40°. The sensitivity of detecting the translational (1 to 10 mm) and the rotational (1° to 3°) misalignments was tested with a breast VMAT case. Ten VMAT plans (six prostate, H&N, pelvis, liver, and breast) were investigated to evaluate the agreement of the target dose and the peripheral dose among ArcCHECK measurements, and TPS and MC dose calculations. A customized acrylic plug holding an ion chamber was used to measure the dose at the center of the ArcCHECK phantom. Both the entrance and the exit doses measured by the ArcCHECK system with and without the plug agreed with the MC simulation to 1.0%. The TPS dose calculation with a 2.5 mm grid overestimated the exit dose by up to 7.2% when the plug was removed. The agreement between the MC and TPS calculations for the ArcCHECK without the plug improved significantly when a 1 mm dose calculation grid was used in the TPS. The noncoplanar delivery test demonstrated that the angular dependency has limited impact on the gamma passing rate (<1.2% drop) for the 2%–3% dose and 2 mm–3 mm DTA criteria. A 1° rotational misalignment introduces 11.3% (3%/3 mm) to 21.3% (1%/1 mm) and 0.2% (3%/3 mm) to 0.8% (1%/1 mm) Gamma passing rate drop for ArcCHECK system and MatriXX system, respectively. Both systems have comparable sensitivity to the AP misalignments. However, a 2 mm RL misalignment introduces gamma passing rate drop ranging from 0.9% (3%/3 mm) to 4.0% (1%/1 mm) and 5.0% (3%/3 mm) to 12.0% (1%/1 mm) for ArcCHECK and MatriXX measurements, respectively. For VMAT plan QA, the gamma analysis passing rates ranged from 96.1% (H&N case) to 99.9% (prostate case), when using the 3%/3 mm DTA criteria for the peripheral dose validation between the TPS and ArcCHCEK measurements. The peripheral dose validation between the MC simulation and ArcCHECK measurements showed at least 97.9% gamma passing rates. The central dose validation also showed an agreement within 2.2% between TPS/MC calculations and ArcCHECK measurements. The worst discrepancy was found in the H&N case, which is the most complex VMAT case. The ArcCHECK system is suitable for VMAT QA evaluation based on the sensitivity to detecting misalignments, the clinical impact of the angular dependency, and the correlation between the dose agreements in the peripheral region and the central region. This work also demonstrated the importance of carrying out a thorough validation of both the TPS and the dosimetry system prior to utilizing it for QA, and the value of having an independent dose calculation tool, such as the MC method, in clinical practice. PACS number: 87.55.Qr


Journal of Applied Clinical Medical Physics | 2015

Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system.

Xu Tong; X Chen; J Li; Qianqian Xu; M Lin; L Chen; Robert A. Price; Chang Ming Ma

This paper investigates the clinical significance of real‐time monitoring of intrafractional prostate motion during external beam radiotherapy using a commercial 4D localization system. Intrafractional prostate motion was tracked during 8,660 treatment fractions for 236 patients. The following statistics were analyzed: 1) the percentage of fractions in which the prostate shifted 2−7 mm for a certain duration; 2) the proportion of the entire tracking time during which the prostate shifted 2−7 mm; and 3) the proportion of each minute in which the shift exceeded 2−7 mm. The ten patients exhibiting maximum intrafractional‐motion patterns were analyzed separately. Our results showed that the percentage of fractions in which the prostate shifted by >2,3,5,and 7 mm off the baseline in any direction for >30 s was 56.8%, 27.2%, 4.6%, and 0.7% for intact prostate and 68.7%, 35.6%, 10.1%, and 1.8% for postprostatectomy patients, respectively. For the ten patients, these percentages were 91.3%, 72.4%, 36.3%, and 6%, respectively. The percentage of tracking time during which the prostate shifted >2,3,5,and 7 mm was 27.8%, 10.7%, 1.6%, and 0.3%, respectively, and it was 56.2%, 33.7%, 11.2%, and 2.1%, respectively, for the ten patients. The percentage of tracking time for a >3 mm posterior motion was four to five times higher than that in other directions. For treatments completed in 5 min (VMAT) and 10 min (IMRT), the proportion for the prostate to shift by >3 mm was 4% and 12%, respectively. Although intrafractional prostate motion was generally small, caution should be taken for patients who exhibit frequent large intrafractional motion. For those patients, adjustment of patient positioning may be necessary or a larger treatment margin may be used. After the initial alignment, the likelihood of prostate motion increases with time. Therefore, it is favorable to use advanced techniques (e.g., VMAT) that require less delivery time in order to reduce the treatment uncertainty resulting from intrafractional prostate motion. PACS number: 87.50.S‐, 87.53.Kn, 87.55.N‐, 87.55.ne


Physics in Medicine and Biology | 2012

Investigation of pulsed low dose rate radiotherapy using dynamic arc delivery techniques

C Ma; M Lin; X F Dai; S Koren; T Klayton; L Wang; J Li; L Chen; R Price

There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while still providing significant tumor control for recurrent cancers. This work investigates the dosimetry feasibility of PLDR treatment using dynamic arc delivery techniques. Five treatment sites were investigated in this study including breast, pancreas, prostate, head and neck, and lung. Dynamic arc plans were generated using the Varian Eclipse system and the RapidArc delivery technique with 6 and 10 MV photon beams. Each RapidArc plan consisted of two full arcs and the plan was delivered five times to achieve a daily dose of 200 cGy. The dosimetry requirement was to deliver approximately 20 cGy/arc with a 3 min interval to achieve an effective dose rate of 6.7 cGy min⁻¹. Monte Carlo simulations were performed to calculate the actual dose delivered to the planning target volume (PTV) per arc taking into account beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. The dose delivery for the five plans was validated using solid water phantoms inserted with an ionization chamber and film, and a cylindrical detector array. Two intensity-modulated arcs were used to efficiently deliver the PLDR plans that provided conformal dose distributions for treating complex recurrent cancers. For the five treatment sites, the mean PTV dose ranged from 18.9 to 22.6 cGy/arc. For breast, the minimum and maximum PTV dose was 8.3 and 35.2 cGy/arc, respectively. The PTV dose varied between 12.9 and 27.5 cGy/arc for pancreas, 12.6 and 28.3 cGy/arc for prostate, 12.1 and 30.4 cGy/arc for H&N, and 16.2 and 27.6 cGy/arc for lung. Advanced radiation therapy can provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent cancers, which can be delivered using dynamic arc delivery techniques with ten full arcs and an effective dose rate of 6.7 ± 4.0 cGy min⁻¹.


Physics in Medicine and Biology | 2013

Investigation of pulsed IMRT and VMAT for re-irradiation treatments: dosimetric and delivery feasibilities.

M Lin; Robert A. Price; J Li; Shengwei Kang; Jie Li; C Ma

Many tumor cells demonstrate hyperradiosensitivity at doses below ~50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (~20 cGy/pulse and effective dose rate 6.7 cGy min−1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min−1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (~20 cGy arc−1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min−1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10–1.38; HI 1.04–1.10) and the VMAT (CI 1.08–1.26; HI 1.05–1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of the 186 IMRT pulses (fields) were found to exceed 50 cGy maximum PTV dose per pulse while the maximum PTV dose per pulse was within 40 cGy for all the VMAT pulses (arcs). However, for VMAT plans, the dosimetric quality of the entire treatment plan was less superior for the breast cases and large irregular targets. The gamma passing rates for both techniques at the 100 MU min−1 dose rate were at least 94.1% (3%/3 mm) and the point dose measurements agreed with the planned values to within 2.2%. The average root mean square error of the leaf position was 0.93 ± 0.83 mm for IMRT and 0.53 ± 0.48 mm for VMAT based on the Dynalog file analysis. The RMS error of the leaf position was nearly identical for the repeated deliveries of the same plans. In general, both techniques are feasible for PLDR treatments. VMAT was more advantageous for PLDR with more uniform target dose per pulse, especially for centrally located tumors. However, for large, irregular and/or peripheral tumors, IMRT could produce more favorable PLDR plans. By taking the biological benefit of PLDR delivery and the dosimetric benefit of IMRT and VMAT, the proposed methods have a great potential for those previously-irradiated recurrent patients.


Journal of Applied Clinical Medical Physics | 2015

Robotic radiosurgery system patient-specific QA for extracranial treatments using the planar ion chamber array and the cylindrical diode array

M Lin; I Veltchev; S Koren; C.-M. Ma; Jinsgeng Li

Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient‐specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image‐based setup. An in‐house program was developed to postprocess the movie file of the measurements and apply the beam‐by‐beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross‐comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1–3 mm) and the rotational (1°–3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7–137 cm3) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray‐tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm2 diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray‐tracing algorithm fails to handle the high‐Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100%/>;92%(3%/3 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient‐specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system. PACS number: 29.40.‐n


Journal of Applied Clinical Medical Physics | 2014

Optimization strategies for pulsed low-dose-rate IMRT of recurrent lung and head and neck cancers

Shengwei Kang; Jinyi Lang; Pei Wang; Jie Li; M Lin; X Chen; Ming Guo; F Chen; L Chen; Charlie Ming Ma

Pulsed low‐dose‐rate radiotherapy (PLDR) has been proven to be a valid method of reirradiation. Previous studies of recurrent cancer radiotherapy were mainly based on conventional 3D CRT and VMAT delivery techniques. There are difficulties in IMRT planning using existing commercial treatment planning systems (TPS) to meet the PLDR protocol. This work focuses on PLDR using ten‐field IMRT and a commercial TPS for two specific sites: recurrent lung cancers and head and neck cancers. Our PLDR protocol requires that the maximum dose to the PTV be less than 0.4 Gy and the mean dose to be 0.2 Gy per field. We investigated various planning strategies to meet the PLDR requirements for 20 lung and head and neck patients. The PTV volume for lung cases ranged from 101.7 to 919.4 cm3 and the maximum dose to the PTV ranged from 0.22 to 0.39 Gy. The PTV volume for head and neck cases ranged from 66.2 to 282.1 cm3 and the maximum dose to the PTV ranged from 0.21 to 0.39 Gy. With special beam arrangements and dosimetry parameters, it is feasible to use a commercial TPS to generate quality PLDR IMRT plans for lung and head and neck reirradiation. PACS number: 87.55.D‐


Medical Dosimetry | 2014

Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low–dose rate delivery techniques

Jie Li; Jinyi Lang; Pei Wang; Shengwei Kang; M Lin; X Chen; F Chen; Ming Guo; L Chen; Chang-Ming Charlie Ma

Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low-dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatment planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4cGy. The maximum doses ranged between 22.9 and 34.8cGy. The minimum doses ranged from 8.2 to 17.5cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6cGy. The maximum doses per gantry angle were between 24.0 and 34.7cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. The volume receiving an 18-Gy (V18) dose for the left and right kidneys was reduced by 10.6% and 12.5%, respectively, for the pancreatic plans. The volume receiving a 45-Gy (V45) dose for the small bowel decreased from 65.3% to 45.5%. For the cases with prostate cancer, the volume receiving a 40-Gy (V40) dose for the bladder and the rectum was reduced significantly by 25.1% and 51.2%, respectively. When compared with the RapidArc technique, the volume receiving a 30-Gy (V30) dose for the left and the right kidneys was lower in the IMRT plans. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. These results clearly demonstrated that the PLDR-IMRT plan was suitable for PLDR pancreatic and prostate cancer treatments in terms of the overall plan quality. A significant reduction in the OAR dose was achieved with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. When compared with the PLDR-3DCRT plan, the PLDR-IMRT plan could provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent pancreatic and prostate cancers. The PLDR-IMRT plan is an effective treatment choice for recurrent cancers in most cancer centers.


Medical Physics | 2011

SU‐E‐T‐803: Dosimetric Evaluation for Pulsed Low Dose Rate Radiation Therapy Using RapidArc Delivery Techniques

C Ma; M Lin; L Wang; Robert A. Price

Purpose: There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) radiotherapy has potential to reduce normal tissue toxicities while still providing significant tumorcontrol for recurrent cancers. This work investigates the dosimetry feasibility of PLDR radiotherapy using the RapidArc delivery technique for a dose escalation trial. Methods: Five body sites were investigated including breast, pancreas, prostate, head and neck, and lung. RapidArc plans were generated using the Varian Eclipse system with 6, 10 and 15MV beams. Each plan consisted of two arcs and the plan was delivered 5 times to achieve a daily dose of 2Gy. The dosimetry requirement was to deliver 20cGy/arc with a 3min interval to achieve an effective dose rate of 6.7cGy/min. Monte Carlo simulations were performed to calculate the actual dosedelivered to the planning target volume (PTV) considering beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. Results: Two full arcs were necessary to achieve superior dose distributions for complex recurrent cancers to spare critical structures effectively. For 9 patients, the mean PTV dose for each arc ranged 18.9–22.6cGy/arc. For breast the minimal and the maximal PTV dose was 8.56 and 31.2cGy/arc, respectively. The RapidArc dose varied between 12.9 and 27.5cGy/arc for pancreas, 12.6 and 28.3cGy/arc for prostate, 12.1 and 30.4cGy/arc for H&N, and 16.2 and 27.6cGy/arc for lung, respectively. Good agreement was achieved between the planned doses and Matrix measurements with 95–98% passing rates Conclusions: Advanced image‐guided radiotherapy can provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent cancers, which can be delivered using the RapidArc technique with 10 full arcs and an effective dose rate of 3–10cGy/min.

Collaboration


Dive into the M Lin's collaboration.

Top Co-Authors

Avatar

C Ma

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J Li

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

S Koren

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Chen

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

I Veltchev

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Wang

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J Fan

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

X Chen

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

R Price

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge