M. Lueker
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Lueker.
Physical Review Letters | 2014
Peter A. R. Ade; R. W. Aikin; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; J. A. Brevik; I. Buder; E. Bullock; C. D. Dowell; L. Duband; J. Filippini; S. Fliescher; S. R. Golwala; M. Halpern; Matthew Hasselfield; S. R. Hildebrandt; G. C. Hilton; V. V. Hristov; K. D. Irwin; K. S. Karkare; J. P. Kaufman; Brian Keating; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo; E. M. Leitch; M. Lueker; P. Mason; C. B. Netterfield
We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300 μK(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5-10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r = 0.20_(-0.05)(+0.07), with r = 0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets.
The Astrophysical Journal | 2011
R. Keisler; C. L. Reichardt; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer; M. Millea
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 square degrees of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ‘ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We nd that the SPT and WMAP data are consistent with each other and, when combined, are well t by a spatially at, CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar uctuations is ns = 0:9663 0:0112. We detect, at 5 signicance, the eect of gravitational lensing on the CMB power spectrum, and nd its amplitude to be consistent with the CDM cosmological model. We explore a number of extensions beyond the CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensorto-scalar ratio to be r < 0:21 (95% CL) and constrain the running of the scalar spectral index to be dns=d lnk = 0:024 0:013. We strongly detect the eects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 , while a model without neutrinos is rejected at 7.5 . The primordial helium abundance is measured to be Yp = 0:296 0:030, and the eective number of relativistic species is measured to be Ne = 3:85 0:62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0:9668 0:0093, r < 0:17 (95% CL), and Ne = 3:86 0:42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high eective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters. Subject headings: cosmology { cosmology:cosmic microwave background { cosmology: observations { large-scale structure of universe
Physical Review Letters | 2016
Peter A. R. Ade; Z. Ahmed; R. W. Aikin; K. D. Alexander; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; B. P. Crill; L. Duband; Cora Dvorkin; J. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; S. Harrison; G. C. Hilton; H. Hui; K. D. Irwin; K. S. Karkare; E. Karpel; J. P. Kaufman; Brian Keating; S. Kefeli
We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.Keck Array and BICEP2 Collaborations: P. A. R. Ade, Z. Ahmed, 3 R. W. Aikin, K. D. Alexander, D. Barkats, S. J. Benton, C. A. Bischoff, J. J. Bock, 7 R. Bowens-Rubin, J. A. Brevik, I. Buder, E. Bullock, V. Buza, 9 J. Connors, B. P. Crill, L. Duband, C. Dvorkin, J. P. Filippini, 11 S. Fliescher, J. Grayson, M. Halpern, S. Harrison, G. C. Hilton, H. Hui, K. D. Irwin, 2, 14 K. S. Karkare, E. Karpel, J. P. Kaufman, B. G. Keating, S. Kefeli, S. A. Kernasovskiy, J. M. Kovac, 9, ∗ C. L. Kuo, 2 E. M. Leitch, M. Lueker, K. G. Megerian, C. B. Netterfield, 17 H. T. Nguyen, R. O’Brient, 7 R. W. Ogburn IV, 2 A. Orlando, 15 C. Pryke, 8, † S. Richter, R. Schwarz, C. D. Sheehy, 16 Z. K. Staniszewski, 7 B. Steinbach, R. V. Sudiwala, G. P. Teply, 15 K. L. Thompson, 2 J. E. Tolan, C. Tucker, A. D. Turner, A. G. Vieregg, 18, 16 A. C. Weber, D. V. Wiebe, J. Willmert, C. L. Wong, 9 W. L. K. Wu, and K. W. Yoon 2 School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA Department of Physics, Stanford University, Stanford, California 94305, USA Department of Physics, California Institute of Technology, Pasadena, California 91125, USA Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, Massachusetts 02138, USA Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada Jet Propulsion Laboratory, Pasadena, California 91109, USA Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Physics, Harvard University, Cambridge, MA 02138, USA Service des Basses Températures, Commissariat à l’Energie Atomique, 38054 Grenoble, France Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada National Institute of Standards and Technology, Boulder, Colorado 80305, USA Department of Physics, University of California at San Diego, La Jolla, California 92093, USA Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada Department of Physics, Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA (Published in PRL 20 January 2016)
Nature | 2013
J. D. Vieira; J. J. Bock; M. Lueker; S. Padin; E. Shirokoff; Z. Staniszewski
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
The Astrophysical Journal | 2014
Peter A. R. Ade; R. W. Aikin; M. Amiri; Denis Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; J. A. Brevik; I. Buder; E. Bullock; G. R. Davis; P. K. Day; C. D. Dowell; L. Duband; J. Filippini; S. Fliescher; S. R. Golwala; M. Halpern; M. Hasselfield; S. R. Hildebrandt; G. C. Hilton; K. D. Irwin; K. S. Karkare; J. P. Kaufman; Brian Keating; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo; Erik M. Leitch; Nuria Llombart
We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1°-5°(l = 40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26 cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of
The Astrophysical Journal | 2013
A. Weiß; C. De Breuck; D. P. Marrone; J. D. Vieira; James E. Aguirre; K. A. Aird; M. Aravena; M. L. N. Ashby; Matthew B. Bayliss; B. A. Benson; M. Béthermin; A. D. Biggs; L. E. Bleem; J. J. Bock; M. Bothwell; C. M. Bradford; M. Brodwin; J. E. Carlstrom; C. L. Chang; Sydney Chapman; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; Thomas P. Downes; C. D. Fassnacht; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; T. R. Greve
15.8\ \mu \mathrm{K}\sqrt{\mathrm{s}}
The Astrophysical Journal | 2010
Mark Brodwin; J. Ruel; Peter A. R. Ade; K. A. Aird; K. Andersson; M. L. N. Ashby; Marshall W. Bautz; G. Bazin; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; J. P. Dudley; G. G. Fazio; Ryan J. Foley; W. Forman; Gordon Garmire; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; F. W. High; G. P. Holder; W. L. Holzapfel; J. D. Hrubes
. The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5farcm2 μK) over an effective area of 384 deg2 within a 1000 deg2 field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales.
Review of Scientific Instruments | 2012
M. Dobbs; M. Lueker; K. A. Aird; A. N. Bender; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; John Clarke; T. M. Crawford; A. T. Crites; D. Flanigan; T. de Haan; E. M. George; N. W. Halverson; W. L. Holzapfel; J. D. Hrubes; B. R. Johnson; John Joseph; R. Keisler; J. Kennedy; Z. Kermish; T. M. Lanting; A. T. Lee; E. M. Leitch; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer
Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S_(1.4mm) > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz) 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.
Proceedings of SPIE | 2012
J. E. Austermann; K. A. Aird; James A. Beall; D. Becker; A. N. Bender; B. A. Benson; L. E. Bleem; J. Britton; J. E. Carlstrom; C. L. Chang; H. C. Chiang; H. M. Cho; T. M. Crawford; A. T. Crites; A. Datesman; T. de Haan; M. Dobbs; E. M. George; N. W. Halverson; N. L. Harrington; J. W. Henning; G. C. Hilton; G. P. Holder; W. L. Holzapfel; S. Hoover; N. Huang; J. Hubmayr; K. D. Irwin; R. Keisler; J. Kennedy
United States. National Aeronautics and Space Administration (Jet Propulsion Laboratory (U.S.))
Applied Physics Letters | 2005
T. M. Lanting; Hsiao-Mei Cho; John Clarke; W. L. Holzapfel; Adrian T. Lee; M. Lueker; P. L. Richards; M. Dobbs; H. Spieler; Augustus Smith
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.