Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. M. Casey is active.

Publication


Featured researches published by M. M. Casey.


Classical and Quantum Gravity | 2002

The GEO 600 gravitational wave detector

B. Willke; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; S. Bose; G. Cagnoli; M. M. Casey; D. Churches; D. Clubley; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davis; E. J. Elliffe; Carsten Fallnich; Andreas Freise; S. Gossler; A. Grant; H. Grote; Gerhard Heinzel; A. Heptonstall; M. Heurs; J. Hough; Keita Kawabe; Karsten Kötter; V. Leonhardt

The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run.


Classical and Quantum Gravity | 2006

Status of the GEO600 detector

H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant

Of all the large interferometric gravitational-wave detectors, the German/British project GEO600 is the only one which uses dual recycling. During the four weeks of the international S4 data-taking run it reached an instrumental duty cycle of 97% with a peak sensitivity of 7 × 10−22 Hz−1/2 at 1 kHz. This paper describes the status during S4 and improvements thereafter.


Proceedings of SPIE | 2004

The status of GEO 600

K. A. Strain; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Goßler; A. Grant; H. Grote; S. Grunewald; J. Harms

The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.


Review of Scientific Instruments | 2003

Mode-cleaning and injection optics of the gravitational-wave detector GEO600

S. Gossler; M. M. Casey; Andreas Freise; A. Grant; H. Grote; Gerhard Heinzel; M. Heurs; M. E. Husman; Karsten Kötter; V. Leonhardt; H. Lück; M. Malec; K. Mossavi; Shigeo Nagano; P. W. McNamara; M. V. Plissi; V. Quetschke; D. I. Robertson; N. A. Robertson; Albrecht Rüdiger; R. Schilling; K. D. Skeldon; K. A. Strain; C. I. Torrie; H. Ward; U. Weiland; B. Willke; W. Winkler; J. Hough; Karsten Danzmann

The British–German interferometric gravitational-wave detector GEO600 uses two high-finesse triangular ring cavities of 8 m optical pathlength each, as an optical mode-cleaning system. The modecleaner system is housed in an ultrahigh-vacuum environment to avoid contamination of the optics and to minimize both the influence of refractive index variations of the air and acoustic coupling to the optics. To isolate the cavities from seismic noise, all optical components are suspended as double pendulums. These pendulums are damped at their resonance frequencies at the upper pendulum stage with magnet-coil actuators. A suspended reaction mass supports three coils matching magnets bonded onto the surface of one mirror of each cavity, allowing length control of the modecleaner cavities to maintain resonance with the laser light. A fully automated control system stabilizes the frequency of the slave laser to that of the master laser, the frequency of the master laser to the length of the first modecleaner and the length of the first to the length of the second modecleaner. The control system uses the Pound–Drever–Hall sideband technique and operates autonomously over long time periods with only infrequent human interaction. The duty cycle of the system was measured to be 99.7% during an 18 day period. The throughput of the whole modecleaner system is about 50%. In this article, we give an overview of the mechanical and optical setup and the achieved performance of the double modecleaner system.


Classical and Quantum Gravity | 2002

The modecleaner system and suspension aspects of GEO 600

S. Gossler; M. M. Casey; Andreas Freise; H. Grote; H. Lück; P. W. McNamara; M. V. Plissi; D. I. Robertson; N. A. Robertson; K. D. Skeldon; K. A. Strain; C. I. Torrie; H. Ward; B. Willke; J. Hough; Karsten Danzmann

GEO 600 uses two 8 m triangular ring cavities as a modecleaner system for the stabilization of the laser. To isolate the cavities with respect to the seismic noise the optical components are suspended as double pendulums. The resonances of these pendulums are damped by a local-control loop via magnet–coil actuators acting on the intermediate masses. The suspension scheme and the measured key data (i.e. finesse, linewidth, visibility, throughput and in-lock durations of the cavities, as well as the isolation performance and the resulting frequency stability) of the modecleaner system will be given in this paper. Furthermore an overview of the GEO 600 interferometer suspension will be given. PACS numbers: 0480N, 9555Y (Some figures in this article are in colour only in the electronic version)


Classical and Quantum Gravity | 2002

Silica research in Glasgow

B. Barr; G. Cagnoli; M. M. Casey; D. Clubley; D. R. M. Crooks; Karsten Danzmann; E. J. Elliffe; S. Gossler; A. Grant; H. Grote; A. Heptonstall; J. Hough; Oliver Jennrich; H. Lück; S. A. McIntosh; G. Newton; D. A. Palmer; M. V. Plissi; D. I. Robertson; N. A. Robertson; S. Rowan; K. D. Skeldon; P. Sneddon; K. A. Strain; C. I. Torrie; H. Ward; P. A. Willems; B. Willke; W. Winkler

The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R&D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasimonolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 × 10 −19 mH z −1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R&D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.


Classical and Quantum Gravity | 2004

Commissioning, characterization and operation of the dual-recycled GEO 600

J. R. Smith; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms

The German-British laser-interferometric gravitational-wave detector GEO 600 is currently being commissioned as part of a worldwide network of gravitational-wave detectors. GEO 600 recently became the first kilometre-scale interferometer to employ dual recycling-an optical configuration that combines power recycling and signal recycling. We present a brief overview of the commissioning of this dual-recycled interferometer, the performance results achieved during a subsequent extended data-taking period, and the plans intended to bring GEO 600 to its final configuration.


Gravitational wave and particle astrophysics detectors | 2004

The Status of GEO600

K. A. Strain; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms

The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.


Classical and Quantum Gravity | 2004

Alignment control of GEO 600

H. Grote; Gerhard Heinzel; Andreas Freise; S. Gossler; B. Willke; H. Lück; H. Ward; M. M. Casey; K. A. Strain; D. I. Robertson; J. Hough; Karsten Danzmann

We give an overview of the automatic mirror alignment system of the gravitational wave detector GEO 600. In order to achieve the required sensitivity of the Michelson interferometer, the axes of interfering beams have to be superimposed with a residual angle of the order 10 −8 rad. The beam spots have to be centred on the mirrors to minimize coupling of alignment noise into longitudinal signals. We present the actual control topology and results from the system in operation, which controls all alignment degrees of the power-recycled Michelson. With this system continuous lock stretches of more than 121 h duration were achieved.


Classical and Quantum Gravity | 2003

A report on the status of the GEO 600 gravitational wave detector

M. Hewitson; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; Andreas Freise; S. Gossler; A. Grant; H. Grote; S. Grunewald; J. Harms; Gerhard Heinzel; I. S. Heng; A. Heptonstall; M. Heurs

GEO 600 is an interferometric gravitational wave detector with 600 m arms, which will employ a novel, dual-recycled optical scheme allowing its optical response to be tuned over a range of frequencies (from ~100 Hz to a few kHz). Additional advanced technologies, such as multiple pendulum suspensions with monolithic bottom stages, make the anticipated sensitivity of GEO 600 comparable to initial detectors with kilometre arm lengths. This paper discusses briefly the design of GEO, reports on the status of the detector up to the end of 2002 with particular focus on participation in coincident engineering and science runs with LIGO detectors. The plans leading to a fully optimized detector and participation in future coincident science runs are briefly outlined.

Collaboration


Dive into the M. M. Casey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Grant

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

Andreas Freise

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

B. Barr

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge