M.M. Sakuragui
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.M. Sakuragui.
Chemosphere | 2012
M.G. Paulino; M.M. Sakuragui; Marisa Narciso Fernandes
The effects of the herbicide atrazine on the gill of the freshwater fish Prochilodus lineatus were evaluated after exposure of fish to 2, 10 and 25 μg L(-1) atrazine during 48 h (acute exposure) and 14 d (subchronic exposure). Ions and osmolality were measured in plasma and gill samples were taken to determine the Na(+)/K(+)-ATPase (NKA) and carbonic anhydrase (CA) activities and for morphological analysis. Plasma osmolality and Na(+) and Cl(-) ions changed depending on atrazine concentration, but atrazine exposure had no effect on the Na(+)/Cl(-) ratio. NKA activity did not change after atrazine exposure, but CA activity decreased in fish exposed to 25 μg L(-1) for 14 d. Gill MRC density decreased after acute exposure but did not change in fish exposed to the subchronic treatment. The MRC density at the epithelial surface increased in fish exposed to 25 μg L(-1), and the MRC fractional area (MRCFA) increased in fish exposed to 10 μg L(-1). The changes in MRCs provide evidence of morphological adjustments to maintain ionic homeostasis in spite of the inhibition of CA activity at the highest atrazine concentration.
Science of The Total Environment | 2014
M.G. Paulino; Tayrine Paschoaletti Benze; Helen Sadauskas-Henrique; M.M. Sakuragui; João B. Fernandes; Marisa Narciso Fernandes
This study evaluates the contaminants in water and their bioaccumulation in the gills and liver of two ecologically distinct fish species, Astyanax fasciatus and Pimelodus maculatus, living in the reservoir of the Furnas hydroelectric power station located in Minas Gerais in the southeastern Brazil. The histological alterations in these organs are also examined. Water and fish were collected in June and December from five sites (site 1: FU10, site 2: FU20, site 3: FU30, site 4: FU40 and site 5: FU50) in the reservoir, and agrochemicals and metals selected based on their use in the field crops surrounding the reservoir were analyzed in the water and in the fish gills and livers. The concentrations of the organochlorines aldrin/dieldrin, endosulfan and heptachlor/heptachlor epoxide as well as the metals copper, chromium, iron and zinc in the gills and livers of both fish species were higher in June than in December; the liver accumulated higher concentrations of contaminants than the gills. The organochlorine metolachlor was detected only in the liver. The histological pattern of changes was similar in both species with regard to contaminant accumulation in the gills and liver. Fish from FU10, the least contaminated site, exhibited normal gill structure and moderate to heavy liver damage. Fish collected at FU20 to FU50, which were contaminated with organochlorines and metals, showed slight to moderate gill damage in June and irreparable liver damage in the livers in June and December. The histological changes in the gills and liver were suitable to distinguishing contaminated field sites and are therefore useful biomarkers for environmental contamination representing a biological end-point of exposure.
Environmental Pollution | 2013
M.M. Sakuragui; M.G. Paulino; Camilo Dias Seabra Pereira; C.S. Carvalho; Helen Sadauskas-Henrique; Marisa Narciso Fernandes
This study investigated the relationship between contaminant body burden and the oxidative stress status of the gills and livers of two wild fish species in the Furnas Hydroelectric Power Station (HPS) reservoir (Minas Gerais, Brazil). Gills and livers presented similar pathways of metals and organochlorine bioaccumulation. During June, organochlorines were associated with lipid peroxidation (LPO), indicating oxidative stress due to the inhibition of the antioxidant enzymes superoxide dismutase and glutathione peroxidase. In the most polluted areas, metal concentrations in the liver were associated with metallothionein. During December, contaminants in the gills and liver were associated with catalase activity and LPO. Aldrin/dieldrin was the contaminant most associated with oxidative damage in the livers of both species. This integrated approach shed light on the relationship between adverse biological effects and bioaccumulation of contaminants inputted by intensive agricultural practices and proved to be a suitable tool for assessing the environmental quality of man-made reservoirs.
Aquatic Toxicology | 2013
Marisa Narciso Fernandes; M.G. Paulino; M.M. Sakuragui; C.A. Ramos; C.D.S. Pereira; Helen Sadauskas-Henrique
Through integrating chemical, biochemical and morphological analyses, this study investigated the effects of multiple pollutants on the gill mitochondria-rich cells (MRCs) in two fish species, Astyanax fasciatus and Pimelodus maculatus, collected from five sites (FU10, FU20, FU30, FU40 and FU50) in the Furnas Hydroelectric Power Station reservoir. Water analyses revealed aluminum, iron and zinc as well as organochlorine (aldrin/dieldrin, endosulfan, heptachlor/heptachlor epoxide and metolachlor) contamination at all of the sites, with the exception of FU10. Copper, chrome, iron and zinc were detected in the gills of both species, and aldrin/dieldrin, endosulfan and heptachlor/heptachlor epoxide were detected in the gills of fish from all of the sites, with the exception of FU10. Fish collected at FU20, FU30 and FU50 exhibited numerous alterations in the surface architecture of their pavement cells and MRCs. The surface MRC density and MRC fractional area were lower in fish from FU20, FU30, FU40 and FU50 than in those from the reference site (FU10) in the winter, and some variability between the sites was observed in the summer. The organochlorine contamination at FU20 and FU50 was associated with variable changes in the MRCs and inhibition of Na(+)/K(+)-ATPase (NKA) activity, especially in P. maculatus. At FU30, the alterations in the MRCs were associated with the contaminants present, especially metals. A multivariate analysis demonstrated a positive association between the biological responses of both species and environmental contamination, indicating that under realistic conditions, a mixture of organochlorines and metals affected the MRCs by inhibiting NKA activity and inducing morphological changes, which may cause an ionic imbalance.
Environmental Monitoring and Assessment | 2011
Helen Sadauskas-Henrique; M.M. Sakuragui; M.G. Paulino; Marisa Narciso Fernandes
The condition factor and blood variables, including erythrocyte lipid peroxidation (LPO) and the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), in two ecologically distinct fish species (Astyanax fasciatus and Pimelodus maculatus) were evaluated at five sites in the Furnas Hydroelectric Power Station reservoir (Brazil) to assess water quality. Aldrin/dieldrin, endosulfan, heptachlor epoxide, and metolachlor were detected at different concentrations in four of the sites. Condition factor was not directly affected by such contaminants. A negative correlation between hematocrit and heptachlor was detected in P. maculatus. Positive correlations between red blood cells and heptachlor as well as an interactive effect of metolachlor and aldrin/dieldrin were detected in A. fasciatus. The erythrocytes of both species collected from the contaminated sites showed high levels of LPO, an increase in SOD and GPx activities and a decrease in CAT activity. Although the leukocyte number and the differential percentage of leukocytes varied among the sites, the hematological variables, the LPO levels, and the antioxidant enzyme activities could be used to assess water quality, regardless of the differences in the responses of the fish species.
Aquatic Toxicology | 2017
M.G. Paulino; Driele Tavares; Flavia Bieczynski; P.G. Pedrão; Naiara Elisabete da Silva de Souza; M.M. Sakuragui; Carlos M. Luquet; Ana Paula Terezan; João B. Fernandes; Alessandra Giani; Marisa Narciso Fernandes
Radiocystis fernandoi R28 strain is a cyanobacterium which produces mostly the RR and YR microcystin variants (MC-RR and MC-YR, respectively). The effects of crude extract of the R. fernandoi strain R28 were evaluated on the protein phosphatases and on the structure and ultrastructure of the liver of the Neotropical fish, Hoplias malabaricus, after acute and subchronic exposure. Concomitantly, the accumulation of the majority of MCs was determined in the liver and muscle. The fish were exposed to 120.60 MC-RR+MC-LR kg-fish-1 (=100μg MC-LReq kg-fish-1) for 12 and 96h (one single dose, acute exposure) and 30days (one similar dose every 72h, subchronic exposure). MCs did not accumulate in the muscle but, in the liver, MC-YR accumulated after acute exposure and MC-RR and MC-YR accumulation occurred after subchronic exposure. Protein phosphatase 2A (PP2A) activity was inhibited only after subchronic exposure. Acute exposure induced liver hyperemia, hemorrhage, changes in hepatocytes and cord-like disorganization. At the ultrastructural level, the decreasing of glycogen and lipid levels, the swelling of mitochondria and whirling of endoplasmic reticulum suggested hepatocyte necrosis. Subchronic exposure resulted in a complete disarrangement of cord-like hepatocytes, some recovery of mitochondria and whirling endoplasmic reticulum and extensive connective tissues containing fibrous materials in the liver parenchyma. Despite microcystin toxicity and liver alterations, no tumor was induced by MCs. In conclusion, the increased algal mass of R. fernandoi in tropical freshwater, producing mainly MC-RR and MC-YR variants, results in fish liver impairments.
Environmental Toxicology | 2014
Tayrine Paschoaletti Benze; M.M. Sakuragui; Lucas Henrique de Paula Zago; Marisa Narciso Fernandes
The action of diflubenzuron (DFB) was evaluated in a freshwater fish, Prochilodus lineatus, after exposure to 0.06, 0.12, 0.25, or 0.50 mg L−1 DFB for 14 days. Erythrocyte nuclear abnormalities (ENA), the gill activity of Na+/K+‐ATPase, H+‐ATPase and carbonic anhydrase (CA), and lipid peroxidation (LPO) and histopathological changes in the gills and liver were determined. The number of micronuclei increased in fish exposed to 0.25 and 0.50 mg L−1 DFB. Plasma Cl− and the CA activity decreased, while the activity of Na+/K+‐ATPase and of H+‐ATPase increased in fish exposed to 0.25 and 0.50 mg L−1 DFB. LPO did not change in the gills but increased in the liver of fish exposed to 0.25 and 0.50 mg L−1 DFB. In the gills, histopathological changes indicated disperse lesions and slight to moderate damage in fish exposed to 0.50 mg L−1 DFB, whereas in the liver, these changes were significantly greater in fish exposed to 0.25 and 0.50 mg L−1 DFB, indicating moderate to severe damage. Continuous exposure to DFB is potentially toxic to P. lineatus, causing heath disorders when the fish is exposed to the two highest DFB concentrations, which are applied to control parasites in aquaculture and to control mosquito populations in the environment.
Ecotoxicology and Environmental Safety | 2018
Iara da C. Souza; Mariana Morozesk; Marina Marques Bonomo; Vinicius C. Azevedo; M.M. Sakuragui; Michael Elliott; Silvia Tamie Matsumoto; Daniel A. Wunderlin; María V. Baroni; Magdalena Victoria Monferrán; Marisa Narciso Fernandes
Metal/metalloid accumulation in fish organs elicits biochemical responses indicating the overall fish and environmental health status. This study evaluated the bioaccumulation of metals and metalloid in relation to a suite of biochemical biomarkers (superoxide dismutase, catalase, glutathione-S-transferase, Na+/K+-ATPase, H+-ATPase, acetylcholinesterase activities and the levels of glutathione, metallothionein, lipid peroxidation and oxidized protein) in different organs of fish, Centropomus parallelus, in Vitória Bay and Santa Cruz estuaries (State of Espírito Santo, Brazil) with distinct contamination levels. Metal and metalloid concentrations differ in each organ and were significantly higher in winter than in summer. Chemometric evaluation performed between metal/metalloid accumulation and the biomarkers revealed a complex scenario in which the biomarker responses depend on both metal accumulation and organ/tissue sensitivity. The metal levels in gills indicate fish contamination mainly via water and the low sensitivity of this organ to most metals. Biomarker responses suggested that the metal elimination pathway is through the gills and kidney. The hepatopancreas and kidneys were the most important detoxification organs while muscle was the less reactive tissue. In general, the finding suggested that, C. parallelus is partly able to tolerate such metal contamination. However, it is emphasized that the biomarker responses imply an energetic cost and may affect the growth rate and reproduction. Given the ecological and economic importance of C. parallelus, the level of toxic metals/metalloids in juvenile fish is an important early-warning for the maintenance, conservation and commercial use of this species.
Archive | 2007
Marisa Narciso Fernandes; Sandro Moron; M.M. Sakuragui
Chemosphere | 2017
M.G. Paulino; Priscila Adriana Rossi; Francine Perri Venturini; Driele Tavares; Naiara Elisabete da Silva de Souza; M.M. Sakuragui; Gilberto Moraes; Ana Paula Terezan; João B. Fernandes; Alessandra Giani; Marisa Narciso Fernandes