M. Machado
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Machado.
Experimental Parasitology | 2012
M. Machado; P. Pires; Augusto M. Dinis; M. Santos-Rosa; V. Alves; Lígia Salgueiro; Carlos Cavaleiro; Maria do Céu Sousa
In order to contribute for the search of new drugs for leishmaniasis, we study the susceptibility of Leishmania infantum, Leishmania tropica and Leishmania major to Cymbopogon citratus essential oil and major compounds, mrycene and citral. C. citratus and citral were the most active inhibiting L. infantum, L. tropica and L. major growth at IC(50) concentrations ranging from 25 to 52 μg/ml and from 34 to 42 μg/ml, respectively. L. infantum promastigotes exposed to essential oil and citral underwent considerable ultrastructural alterations, namely mitochondrial and kinetoplast swelling, autophagosomal structures, disruption of nuclear membrane and nuclear chromatin condensation. C. citratus essential oil and citral promoted the leishmanicidal effect by triggering a programmed cell death. In fact, the leishmanicidal activity was mediated via apoptosis as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. Taken together, ours findings lead us to propose that citral was responsible for anti-Leishmania activity of the C. citratus and both may represent a valuable source for therapeutic control of leishmaniasis.
Experimental Parasitology | 2011
M. Machado; Augusto M. Dinis; Lígia Salgueiro; José B.A. Custódio; Carlos Cavaleiro; Maria do Céu Sousa
The present work evaluates the anti-Giardia activity of Syzygium aromaticum and its major compound eugenol. The effects were evaluated on parasite growth, adherence, viability and ultrastructure. S. aromaticum essential oil (IC(50)=134 μg/ml) and eugenol (IC(50)=101 μg/ml) inhibited the growth of G. lamblia. The essential oil inhibited trophozoites adherence since the first hour of incubation and was able to kill almost 50% of the parasites population in a time dependent manner. The eugenol inhibited G. lamblia trophozoites adherence since the third hour and not induce cell lyses. The main morphological alterations were modifications on the cell shape, presence of precipitates in the cytoplasm, autophagic vesicles, internalization of flagella and ventral disc, membrane blebs, and intracellular and nuclear clearing. Taken together, our findings lead us to propose that eugenol was responsible for the anti-giardial activity of the S. aromaticum essential oil and both have potential for use as therapeutic agents against giardiasis.
Parasitology Research | 2010
M. Machado; Augusto M. Dinis; Lígia Salgueiro; Carlos Cavaleiro; José B.A. Custódio; Maria do Céu Sousa
The present work evaluates the anti-Giardia activity of phenolic-rich essential oils obtained from Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris chemotype thymol, and Lippia graveolens aromatic plants. The effects were evaluated on parasite growth, cell viability adherence, and morphology. The tested essential oils inhibited the growth of Giardia lamblia. T. capitata essential oil is the most active followed by O. virens, T. zygis subsp. sylvestris, and L. graveolens oils. The tested essential oils at IC50 (71–257) μg/ml inhibited parasite adherence (p < 0.001) since the first hour of incubation and were able to kill almost 50% of the parasites population in a time-dependent manner. The main ultrastructural alterations promoted by essential oils were deformations in typical trophozoite appearance, often roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electrodense precipitates in cytoplasm and nuclei, and internalization of flagella and ventral disc. Our data suggest that essential oils induced cell death probably by processes associated to the loss of osmoregulation caused by plasmatic membrane alterations. Experiments revealed that the essential oils did not present cytotoxic effects in mammalian cells. In conclusion, T. capitata, O. virens, T. zygis subsp. sylvestris chemotype thymol, and L. graveolens essential oils have antigiardial activity in vitro and seem to have potential for the treatment of the parasitic disease caused by the protozoan G. lamblia.
Veterinary Parasitology | 2014
M. Machado; Augusto M. Dinis; M. Santos-Rosa; V. Alves; Lígia Salgueiro; Carlos Cavaleiro; Maria do Céu Sousa
In the search for new leishmanicidal agents, Thymus capitellatus Hoffmanns. & Link (family Lamiaceae) volatile extract and its major compounds, 1,8-cineole and borneol, were tested against Leishmania infantum, Leishmania tropica and Leishmania major. Plant volatile extract (essential oil) was analysed by GC and GC-MS and the activity of essential oil on Leishmania promastigotes viability was assessed using tetrazolium-dye colorimetric method (MTT). The MTT test was also used to assess the cytotoxicity of essential oil on macrophages and bovine aortic endothelial cells. Effects on parasites were also analyzed by flow cytometry in order to assess mitochondrial transmembrane electrochemical gradient (JC-1), analyze phosphatidylserine externalization (annexin V-FITC, propidium iodide) and evaluate cell cycle (DNase-free, RNase, PI). Morphological and ultrastructural studies were performed by light, scanning and transmission electron microscopy. T. capitellatus volatile extract exhibited anti-parasite activity on Leishmania species, with IC50 values ranging from 35 to 62 μg/ml. However, major compounds 1,8-cineole and borneol did not showed biological activity suggesting that these monoterpenes are not responsible for the antileishmanial activity of T. capitellatus essential oil. Appearance of aberrant-shaped cells, mitochondrial swelling and autophagosomal structures were some of the ultrastructural alterations exhibited among treated promastigote cells. T. capitellatus promoted leishmanicidal effect by triggering a programmed cell death as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. The volatile extract did not induced cytotoxic effects on mammalian cells. Taken together, these results suggest that T. capitellatus may represent a valuable source for therapeutic control of leishmaniasis in humans and animals.
Flavour and Fragrance Journal | 2010
M. Machado; G. Santoro; Maria do Céu Sousa; Lígia Salgueiro; Carlos Cavaleiro
Natural Product Communications | 2010
M. Machado; M. do C. Sousa; Lígia Salgueiro; Carlos Cavaleiro
The Journal of Agricultural Science | 2012
Ana F. Vinha; Marta Oliveira Soares; Teresa Herdeiro; M. Machado
The Journal of Agricultural Science | 2013
Ana F. Vinha; Sérgio V. P. Barreira; Ana Rita Castro; M. Machado
Archive | 2012
Ana F. Vinha; M. Machado; António Santos; Maria Beatriz; Ana Ferreira da Vinha
MicroBiotec'11 : book of abstracts | 2011
Maria Carlos Dias; Sandra Teixeira; Carlos Cavaleiro; M. Machado; Nicolina Dias