Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Makela is active.

Publication


Featured researches published by M. Makela.


Science & Global Security | 2008

Tomographic Imaging with Cosmic Ray Muons

C. L. Morris; C. C. Alexander; Jeffrey Bacon; Konstantin N. Borozdin; D. J. Clark; R. Chartrand; C. J. Espinoza; Andrew M. Fraser; M. Galassi; J. A. Green; J. S. Gonzales; John J. Gomez; Nicolas W. Hengartner; Gary E. Hogan; Alexei V. Klimenko; M. Makela; P. McGaughey; J. Medina; F.E. Pazuchanics; William C. Priedhorsky; J. C. Ramsey; A. Saunders; R. C. Schirato; Larry J. Schultz; Michael James Sossong; G. S. Blanpied

Over 120 million vehicles enter the United States each year. Many are capable of transporting hidden nuclear weapons or nuclear material. Currently deployed X-ray radiography systems are limited because they cannot be used on occupied vehicles and the energy and dose are too low to penetrate many cargos. We present a new technique that overcomes these limitations by obtaining tomographic images using the multiple scattering of cosmic radiation as it transits each vehicle. When coupled with passive radiation detection, muon interrogation could contribute to safe and robust border protection against nuclear devices or material in occupied vehicles and containers.


Physical Review Letters | 2002

Measurements of ultracold-neutron lifetimes in solid deuterium.

C. L. Morris; Juan-Manuel Anaya; T. J. Bowles; B. W. Filippone; P. Geltenbort; R. Hill; Masahiro Hino; Seth Hoedl; Gary E. Hogan; Takeo Ito; T. Kawai; K. Kirch; S. K. Lamoreaux; C.-Y. Liu; M. Makela; L.J. Marek; Jonathan W. Martin; R.N. Mortensen; A. Pichlmaier; A. Saunders; S. J. Seestrom; D. Smith; W. A. Teasdale; Brian Tipton; Masahiko Utsuro; A. R. Young; Junhua Yuan

We present the first measurements of the survival time of ultracold neutrons (UCNs) in solid deuterium (SD2). This critical parameter provides a fundamental limitation to the effectiveness of superthermal UCN sources that utilize solid ortho-deuterium as the source material. These measurements are performed utilizing a SD2 source coupled to a spallation source of neutrons, providing a demonstration of UCN production in this geometry and permitting systematic studies of the influence of thermal up-scatter and contamination with para-deuterium on the UCN survival time.


Physical Review Letters | 2010

Determination of the axial-vector weak coupling constant with ultracold neutrons.

J. Liu; M. P. Mendenhall; Adam Holley; H. O. Back; T. J. Bowles; L. J. Broussard; R. Carr; S. Clayton; S. Currie; B. W. Filippone; Alejandro García; P. Geltenbort; K. P. Hickerson; J. Hoagland; Gary E. Hogan; B. Hona; T. M. Ito; C.-Y. Liu; M. Makela; R. R. Mammei; J. W. Martin; D. Melconian; C. L. Morris; R. W. Pattie; A. Pérez Galván; M. L. Pitt; B. Plaster; J. C. Ramsey; R. Rios; R. Russell

A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.


Physical Review C | 2014

Storage of Ultracold Neutrons in the Magneto-Gravitational Trap of the UCN Experiment

D. J. Salvat; E. R. Adamek; D. Barlow; J. D. Bowman; L. J. Broussard; Nathan Callahan; S. M. Clayton; C. Cude-Woods; S. Currie; E. B. Dees; W. Fox; P. Geltenbort; K. P. Hickerson; A. T. Holley; Chen-Yu Liu; M. Makela; J. Medina; D. J. Morley; C. L. Morris; S. I. Penttilä; J. Ramsey; A. Saunders; S. J. Seestrom; E. I. Sharapov; Sky Sjue; B. A. Slaughter; J. Vanderwerp; B. VornDick; P. L. Walstrom; Zhehui Wang

The UCN experiment is designed to measure the lifetime n of the free neutron by trapping ultracold neutrons (UCN) in a magneto-gravitational trap. An asymmetric bowl-shaped NdFeB magnet Halbach array confines low-field-seeking UCN within the apparatus, and a set of electromagnetic coils in a toroidal geometry provides a background holding field to eliminate depolarization-induced UCN loss caused by magnetic field nodes. We present a measurement of the storage time store of the trap by storing UCN for various times and counting the survivors. The data are consistent with a single exponential decay, and we find store = 860 19 s, within 1 of current global averages for n. The storage time with the holding field deactivated is found to be store = 470 160 s; this decreased storage time is due to the loss of UCN, which undergo Majorana spin flips while being stored. We discuss plans to increase the statistical sensitivity of the measurement and investigate potential systematic effects.


Science | 2018

Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection

Robert Pattie; Nathan Callahan; C. Cude-Woods; E. R. Adamek; L. J. Broussard; Steven Clayton; S. Currie; E. B. Dees; X. Ding; E. M. Engel; D. E. Fellers; W. Fox; P. Geltenbort; K. P. Hickerson; Mark A. Hoffbauer; A. T. Holley; A. Komives; Ching Liu; S. W. T. MacDonald; M. Makela; C. L. Morris; J. D. Ortiz; J. C. Ramsey; D. J. Salvat; A. Saunders; S. J. Seestrom; E. I. Sharapov; Sky Sjue; Zhaowen Tang; J. Vanderwerp

How long does a neutron live? Unlike the proton, whose lifetime is longer than the age of the universe, a free neutron decays with a lifetime of about 15 minutes. Measuring the exact lifetime of neutrons is surprisingly tricky; putting them in a container and monitoring their decay can lead to errors because some neutrons will be lost owing to interactions with the container walls. To overcome this problem, Pattie et al. measured the lifetime in a trap where ultracold polarized neutrons were levitated by magnetic fields, precluding interactions with the trap walls (see the Perspective by Mumm). This more precise determination of the neutron lifetime will aid our understanding of how the first nuclei formed after the Big Bang. Science, this issue p. 627; see also p. 605 Ultracold polarized neutrons are levitated in a trap to measure their lifetime with reduced systematic uncertainty. The precise value of the mean neutron lifetime, τn, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of an in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/–0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015

A multilayer surface detector for ultracold neutrons

Zhehui Wang; Mark A. Hoffbauer; C. L. Morris; Nathan Callahan; E. R. Adamek; Jeffrey Bacon; M. Blatnik; Aaron Brandt; L. J. Broussard; Steven Clayton; C. Cude-Woods; S. Currie; E. B. Dees; X. Ding; J. Gao; F. Gray; K. P. Hickerson; A. T. Holley; Takeyasu M. Ito; Ching Liu; M. Makela; J. C. Ramsey; Robert Pattie; Daniel Salvat; A. Saunders; D. W. Schmidt; R. K. Schulze; S. J. Seestrom; E. I. Sharapov; A. Sprow

Abstract A multilayer surface detector for ultracold neutrons (UCNs) is described. The top 10 B layer is exposed to vacuum and directly captures UCNs. The ZnS:Ag layer beneath the 10 B layer is a few microns thick, which is sufficient to detect the charged particles from the 10 B(n,α) 7 Li neutron-capture reaction, while thin enough that ample light due to α and 7 Li escapes for detection by photomultiplier tubes. A 100-nm thick 10 B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials, and other parameters. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparison with other existing 3 He and 10 B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.


Physical Review C | 2018

New result for the neutron

M. A. P. Brown; E. B. Dees; E. R. Adamek; B. Allgeier; M. Blatnik; T. J. Bowles; L. J. Broussard; R. Carr; Steven Clayton; C. Cude-Woods; S. Currie; X. Ding; B. W. Filippone; A. García; P. Geltenbort; S. Hasan; K. P. Hickerson; J. Hoagland; R. Hong; G. E. Hogan; A. T. Holley; Takeyasu M. Ito; A. Knecht; Ching Liu; J. Liu; M. Makela; J. W. Martin; D. Melconian; M. P. Mendenhall; S. D. Moore

Background: The neutron β-decay asymmetry parameter A_0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A_0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ≡gA/gV, which under assumption of the conserved vector current hypothesis (gV=1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A_0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A_0. Results: The UCNA experiment reports a new 0.67% precision result for A_0 of A_0=−0.12054(44)_(stat)(68)_(syst), which yields λ=gA/gV=−1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)syst and λ=gA/gV=−1.2772(20). Conclusions: This new result for A0 and gA/gV from the UCNA experiment has provided confirmation of the shift in values for gA/gV that has emerged in the published results from more recent experiments, which are in striking disagreement with the results from older experiments. Individual systematic corrections to the asymmetries in older experiments (published prior to 2002) were >10%, whereas those in the more recent ones (published after 2002) have been of the scale of <2%. The impact of these older results on the global average will be minimized should future measurements of A0 reach the 0.1% level of precision with central values near the most recent results.


Physical Review C | 2013

\beta

M. P. Mendenhall; R. W. Pattie; Y. Bagdasarova; D. B. Berguno; L. J. Broussard; R. Carr; S. Currie; X. Ding; B. W. Filippone; A. Garc; P. Geltenbort; K. P. Hickerson; J. Hoagland; Adam Holley; R. Hong; Takeyasu M. Ito; A. Knecht; Y. Liu; J. Liu; M. Makela; R. R. Mammei; J. W. Martin; Dan Melconian; S. D. Moore; C. L. Morris; M. L. Pitt; B. Plaster; J. C. Ramsey; R. Rios; A. Saunders

A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30).


Physical Review C | 2010

-asymmetry parameter

Christopher Lavelle; Chen-Yu Liu; W. Fox; G. Manus; P. M. McChesney; D. J. Salvat; Y. Shin; M. Makela; C. L. Morris; A. Saunders; A. Couture; A. R. Young

We present the results of an Ultracold neutron (UCN) production experiment in a pulsed neutron beam line at the Los Alamos Neutron Scattering Center. The experimental apparatus allows for a comprehensive set of measurements of UCN production as a function of target temperature, incident neutron energy, target volume, and applied magnetic field. However, the low counting statistics of the UCN signal expected can be overwhelmed by the large background associated with the scattering of the primary cold neutron flux that is required for UCN production. We have developed a background subtraction technique that takes advantage of the very different time-of-flight profiles between the UCN and the cold neutrons, in the pulsed beam. Using the unique timing structure, we can reliably extract the UCN signal. Solid ortho-D2 is used to calibrate UCN transmission through the apparatus, which is designed primarily for studies of UCN production in solid O2. In addition to setting the overall detection efficiency in the apparatus,UCN production data using solid D2 suggest that the UCN upscattering cross-section is smaller than previous estimates, indicating the deficiency of the incoherent approximation widely used to estimate inelastic cross-sections in the thermal and cold regimes.


Physical Review C | 2013

A_0

E. I. Sharapov; C. L. Morris; M. Makela; A. Saunders; E. R. Adamek; Yelena Bagdasarova; L. J. Broussard; C. Cude-Woods; Deon E Fellers; P. Geltenbort; Syed Hasan; K. P. Hickerson; Gary E. Hogan; A. T. Holley; Chen-Yu Liu; M. P. Mendenhall; J. Ortiz; Robert Pattie; D. G. Phillips; J. C. Ramsey; Daniel Salvat; S. J. Seestrom; E. Shaw; Sky Sjue; W. E. Sondheim; B. VornDick; Zhehui Wang; T. L. Womack; A. R. Young; B. A. Zeck

The study of neutron cross sections for elements used as efficient “absorbers” of ultracold neutrons (UCN) is crucial for many precision experiments in nuclear and particle physics, cosmology and gravity. In this context, “absorption” includes both the capture and upscattering of neutrons to the energies above the UCN energy region. The available data, especially for hydrogen, do not agree between themselves or with the theory. In this report we describe measurements performed at the Los Alamos National Laboratory UCN facility of the UCN upscattering cross sections for vanadium and for hydrogen in CH_2 using simultaneous measurements of the radiative capture cross sections for these elements. We measured σ_(up)=1972±130 b for hydrogen in CH_2, which is below theoretical expectations, and σ_(up)=25±9 b for vanadium, in agreement with the expectation for the neutron heating by thermal excitations in solids.

Collaboration


Dive into the M. Makela's collaboration.

Top Co-Authors

Avatar

C. L. Morris

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Saunders

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gary E. Hogan

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. C. Ramsey

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Takeyasu M. Ito

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. J. Broussard

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. R. Young

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

S. Currie

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. P. Hickerson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. J. Seestrom

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge