Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Margarida C. A. Castro is active.

Publication


Featured researches published by M. Margarida C. A. Castro.


Journal of Inorganic Biochemistry | 2009

Vanadium compounds as therapeutic agents: Some chemical and biochemical studies

Henrique Faneca; V.A. Figueiredo; Isabel Tomaz; Gisela Gonçalves; Fernando Avecilla; M.C. Pedroso de Lima; Carlos F. G. C. Geraldes; João Costa Pessoa; M. Margarida C. A. Castro

The behaviour of three vanadium(V) systems, namely the pyridinone (V(V)-dmpp), the salicylaldehyde (V(V)-salDPA) and the pyrimidinone (V(V)-MHCPE) complexes, is studied in aqueous solutions, under aerobic and physiological conditions using (51)V NMR, EPR and UV-Visible (UV-Vis) spectroscopies. The speciations for the V(V)-dmpp and V(V)-salDPA have been previously reported. In this work, the system V(V)-MHCPE is studied by pH-potentiometry and (51)V NMR. The results indicate that, at pH ca. 7, the main species present are (V(V)O(2))L(2) and (V(V)O(2))LH(-1) (L=MHCPE(-)) and hydrolysis products, similar to those observed in aqueous solutions of V(V)-dmpp. The latter species is protonated as the pH decreases, originating (V(V)O(2))L and (V(V)O(2))LH. All the V(V)-species studied are stable in aqueous media with different compositions and at physiological pH, including the cell culture medium. The compounds were screened for their potential cytotoxic activity in two different cell lines. The toxic effects were found to be incubation time and concentration dependent and specific for each compound and type of cells. The HeLa tumor cells seem to be more sensitive to drug effects than the 3T3-L1 fibroblasts. According to the IC(50) values and the results on reversibility to drug effects, the V(V)-species resulting from the V(V)-MHCPE system show higher toxicity in the tumor cells than in non-tumor cells, which may indicate potential antitumor activity.


NMR in Biomedicine | 2009

Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat

Teresa Delgado; D. Pinheiro; M. Madalena Caldeira; M. Margarida C. A. Castro; Carlos F. G. C. Geraldes; Pilar López-Larrubia; Sebastián Cerdán; John G. Jones

Hepatic triglyceride (HTG) accumulation from peripheral dietary sources and from endogenous de novo lipogenesis (DNL) was quantified in adult Sprague–Dawley rats by combining in vivo localized 1H MRS measurement of total hepatic lipid with a novel ex vivo 2H NMR analysis of HTG 2H enrichment from 2H‐enriched body water. The methodology for DNL determination needs further validation against standard methodologies. To examine the effect of a high‐fat diet on HTG concentrations and sources, animals (n = 5) were given high‐fat chow for 35 days. HTG accumulation, measured by in vivo 1H MRS, increased significantly after 1 week (3.85 ± 0.60% vs 2.13 ± 0.34% for animals fed on a standard chow diet, P < 0.05) and was maintained until week 5 (3.30 ± 0.60% vs 1.12 ± 0.30%, P < 0.05). Animals fed on a high‐fat diet were glucose intolerant (13.3 ± 1.3 vs 9.4 ± 0.8 mM in animals fed on a standard chow diet, for 60 min glycemia after glucose challenge, P < 0.05). In control animals, DNL accounted for 10.9 ± 1.0% of HTG, whereas in animals given the high‐fat diet, the DNL contribution was significantly reduced to 1.0 ± 0.2% (P < 0.01 relative to controls). In a separate study to determine the response of HTG to weaning from a high‐fat diet, animals with raised HTG (3.33 ± 0.51%) after 7days of a high‐fat diet reverted to basal HTG concentrations (0.76 ± 0.06%) after an additional 7 days of weaning on a standard chow diet. These studies show that, in healthy rats, HTG concentrations are acutely influenced by dietary lipid concentrations. Although the DNL contribution to HTG content is suppressed by a high‐fat diet in adult Sprague–Dawley rats, this effect is insufficient to prevent overall increases in HTG concentrations. Copyright


Journal of Inorganic Biochemistry | 1989

Interaction of vanadate with monosaccarides and nucleosides: A multinuclear NMR study

Carlos F. G. C. Geraldes; M. Margarida C. A. Castro

Proton, 13C and 51V nuclear magnetic resonance spectroscopy has been used to study the interaction of vanadate with several molecules containing more than one hydroxyl group, including various aldoses and nucleosides. The aldoses D-mannose and D-ribose mainly form tridentate complexes, of trigonal bipyramidal geometry, with vanadate at pH 7. These sugars use three consecutive hydroxyl groups, cis to each other, of their pyranose forms to bind vanadate in those cyclic triesters. Other aldoses, like D-glucose, which do not have this unique structural characteristic, do not form tridentate complexes, but can form weaker bidentate cyclic diesters using two consecutive pyranose cis hydroxyl groups. Of course, the pyranose forms of D-mannose and D-ribose, as well as the furanose form of D-ribose, also yield cyclic diesters of vanadate. All these aldoses form weak monodentate noncyclic monoesters of tetrahedral geometry using a single hydroxyl group. The nucleosides uridine, cytidine and adenosine form two complexes of trigonal bipyramidal geometry with vanadate. In these complexes, having 1:1 and 2:1 ligand-to-metal stoichiometries, the nucleosides form cyclic diesters with vanadate using their C2, and C3, hydroxyl groups.


Journal of Neurochemistry | 2006

The interaction between dopamine D2-like and beta-adrenergic receptors in the prefrontal cortex is altered by mood-stabilizing agents

Liliana P. Montezinho; M. Margarida C. A. Castro; Carlos B. Duarte; Silke Penschuck; Carlos F. G. C. Geraldes; Arne Mørk

Several studies have suggested the involvement of biogenic monoaminergic neurotransmission in bipolar disorder and in the therapy for this disease. In this study, the effects of the mood‐stabilizing drugs lithium, carbamazepine or valproate on the dopaminergic and adrenergic systems, particularly on D2‐like and β‐adrenergic receptors, were studied both in cultured rat cortical neurones and in rat prefrontal cortex. In vitro and in vivo data showed that stimulation of β‐adrenergic receptors with isoproterenol increased cyclic adenosine monophosphate (cAMP) levels and this effect was significantly inhibited by lithium, carbamazepine or valproate. The activation of dopamine D2‐like receptors with quinpirole decreased the isoproterenol‐induced rise in cAMP in control conditions. This inhibition was observed in vivo after chronic treatment of the rats with carbamazepine or valproate, but not after treatment with lithium or in cultured rat cortical neurones after 48 h exposure to the three mood stabilizers. Dopamine D2 and β1‐adrenergic receptors were found to be co‐localized in prefrontal cortical cells, as determined by immunohistochemistry, but western blot experiments revealed that receptor levels were differentially affected by treatment with the three mood stabilizers. These data show that mood stabilizers affect D2 receptor‐mediated regulation of β‐adrenergic signalling and that each drug acts by a unique mechanism.


Dalton Transactions | 2013

A novel VIVO–pyrimidinone complex: synthesis, solution speciation and human serum protein binding

Gisela Gonçalves; Isabel Tomaz; Isabel Correia; Luis F. Veiros; M. Margarida C. A. Castro; Fernando Avecilla; Lorena Palacio; Miguel A. Maestro; Tamás Kiss; Tamás Jakusch; M. Helena Garcia; João Costa Pessoa

The pyrimidinones mhcpe, 2-methyl-3H-5-hydroxy-6-carboxy-4-pyrimidinone ethyl ester (mhcpe, 1), 2,3-dimethyl-5-benzyloxy-6-carboxy-4-pyrimidinone ethyl ester (dbcpe, 2) and N-methyl-2,3-dimethyl-5-hydroxy-6-carboxyamido-4-pyrimidinone (N-MeHOPY, 3), are synthesized and their structures determined by single crystal X-ray diffraction. The acid-base properties of 1 are studied by potentiometric and spectrophotometric methods, the pK(a) values being 1.14 and 6.35. DFT calculations were carried out to determine the most stable structure for each of the H2L(+), HL and L(-) forms (HL = mhcpe) and assign the groups involved in the protonation-deprotonation processes. The mhcpe(-) ligand forms stable complexes with V(IV)O(2+) in the pH range 2 to 10, and potentiometry, EPR and UV-Vis techniques are used to identify and characterize the V(IV)O-mhcpe species formed. The results are consistent with the formation of V(IV)O, (V(IV)O)L, (V(IV)O)L2, (V(IV)O)2L2H(-2), (V(IV)O)L2H(-1), (V(IV)O)2L2H(-3), (V(IV)O)LH(-2) species and V(IV)O-hydrolysis products. Calculations indicate that the global binding ability of mhcpe towards V(IV)O(2+) is similar to that of maltol (Hmaltol = 3-hydroxy-2-methyl-4H-pyran-4-one) and lower than that of 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdhp). The interaction of V(IV)O-complexes with human plasma proteins (transferrin and albumin) is studied by circular dichroism (CD), EPR and (51)V NMR spectroscopy. V(IV)O-mhcpe-protein ternary complexes are formed in both cases. The binding of V(IV)O(2+) to transferrin (hTF) in the presence of mhcpe involves mainly (V(IV)O)1(hTF)(mhcpe)1, (V(IV)O)2(hTF)(mhcpe)1 and (V(IV)O)2(hTF)(mhcpe)2 species, bound at the Fe(III) binding sites, and the corresponding conditional formation constants are determined. Under the conditions expected to prevail in human blood serum, CD data indicate that the V(IV)O-mhcpe complexes mainly bind to hTF; the formation of V(IV)O-hTF-mhcpe complexes occurs in the presence of Fe(III) as well, distinct EPR signals being clearly obtained for Fe(III)-hTF and to V(IV)O-hTF-mhcpe species. Thus this study indicates that transferrin plays the major role in the transport of V(IV)O-mhcpe complexes under blood plasma conditions in the form of ternary V(IV)-ligand-protein complexes.


Journal of Inorganic Biochemistry | 2010

Study of the antidiabetic capacity of the VO(dmpp)2 complex.

Marta Passadouro; Ana M. Metelo; Alice S. Melão; Joana R. Pedro; Henrique Faneca; Eugénia Carvalho; M. Margarida C. A. Castro

In this work we report biochemical ex vivo studies with a vanadium compound containing a pyridinone ligand, the bis(1,2-dimethyl-3-hydroxy-4-pyridinonate)oxovanadium (IV), V(IV)O(dmpp)(2), which has shown to have promising antidiabetic activity. The experiments were carried out on primary adipocytes of 6-8 week old Wistar rats. Insulin-stimulated glucose uptake studies were performed using a radioactive assay by measuring the (U)-(14)C-glucose taken up by the isolated adipocytes for 30 min. Adipocytes were incubated with and without insulin and in the presence and absence of different concentrations of V(IV)O(dmpp)(2) (100-500 microM) for 45 min. We observed that in a nontoxic concentration, as demonstrated by the Alamar Blue test, V(IV)O(dmpp)(2) significantly increases glucose uptake, in the absence of insulin, by 5-folds higher than basal, and it has a significant inhibitory effect of 78% on free fatty acid release in isolated adipocytes from normal rats. We also demonstrated that it promotes the phosphorylation of Akt1, a key protein in the insulin signaling cascade. These results were compared with those obtained with another vanadium compound reported in the literature, with a similar structure, the bis(maltolato)oxovanadium (IV) (BMOV), which is now in clinical trials. Our ex vivo results clearly indicate that V(IV)O(dmpp)(2) is a good candidate to be a promising drug for the treatment of diabetes and other metabolic disorders.


Magnetic Resonance in Medicine | 2004

Quantitation of erythrocyte pentose pathway flux with [2-13C]glucose and 1H NMR analysis of the lactate methyl signal

Teresa Delgado; M. Margarida C. A. Castro; Carlos F. G. C. Geraldes; John G. Jones

A simple and sensitive NMR method for quantifying excess 13C‐enrichment in positions 2 and 3 of lactate by 1H NMR spectroscopy of the lactate methyl signal is described. The measurement requires neither signal calibrations nor the addition of a standard and accounts for natural abundance 13C‐contributions. As a demonstration, the measurement was applied to ∼3 μmol of lactate generated by erythrocyte preparations incubated with [2‐13C]glucose to determine the fraction of glucose metabolized by the pentose phosphate pathway (PP). PP fluxes were estimated from the ratio of excess 13C‐enrichment in lactate carbon 3 relative to carbon 2 in accordance with established metabolic models. Under baseline conditions, PP flux accounted for 7 ± 2% of glucose consumption while in the presence of methylene blue, a classical activator of PP activity, its contribution increased to 27 ± 10% of total glucose consumption (P < 0.01). Magn Reson Med 51:1283–1286, 2004.


Journal of Inorganic Biochemistry | 2000

Structural study of the interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) in aqueous solution

M. Margarida C. A. Castro; Carlos F. G. C. Geraldes; Paula Gameiro; Eulália Pereira; Baltazar de Castro; Maria Rangel

The interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) was studied in aqueous solution using a combination of multinuclear NMR and EPR spectroscopies, as well as potentiometry and cyclic voltammetry. The different species in solution were identified and characterized, and their pKa values and stability constants determined. The vanadium complexes formed in solution are strongly dependent on media composition (ionic strength, presence of buffer), pH and metal-to-ligand ratio (M:L). Two major species--V(V)/dmpp and V(V)/(dmpp)2--are formed in a 140 mM NaCl solution within the pH range 4.5 to 9.0, when M:L = 1:2. In the presence of excess ligand (M:L < or = 1:5), only the 1:2 complex is present, and at pH < 4 paramagnetic species are detected by EPR in solution, thus indicating a reducing capacity of the ligand. Cyclic voltammetry shows that redox processes in solution are not just electron transfer, but are accompanied by chemical reactions. The pK, values and stability constants were determined both by 51V NMR spectroscopy and potentiometry. The present results have a particular interest in the understanding of the aqueous solution chemistry in aerobic conditions of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato) oxovanadium(IV) complex, VO(dmpp)2, a vanadium compound with potential insulin-mimetic properties.


Journal of Inorganic Biochemistry | 2012

VO(dmpp)2 normalizes pre-diabetic parameters as assessed by in vivo magnetic resonance imaging and spectroscopy.

Ana M. Metelo; Rocío Pérez-Carro; M. Margarida C. A. Castro; Pilar López-Larrubia

Type 2 diabetes mellitus has been associated with obesity, metabolic syndrome, cardiovascular diseases and cancer. Attempts have been made for early diagnosis and finding effective drugs to prevent severe consequences and ameliorate the symptoms of this disorder. In this work, the pharmacological properties of VO(dmpp)(2), [bis(1,2-dimethyl-3-hydroxy-4-pyridinonato)oxovanadium(IV)], were in vivo evaluated. For 4 weeks fatty Zucker rats were subjected to a daily dose of VO(dmpp)(2) (44 μmol/kg) and their metabolic profile was followed by assessing different biological parameters at established time points: body weight, subcutaneous fat width and hepatic triglyceride content determined by magnetic resonance imaging and spectroscopy, respectively. A glucose tolerance test was performed at the end of the experiment. After treatment, treated obese rats presented a weight significantly lower than the non-treated obese animals (359.0±11.1 vs. 433.5±6.2g, P<0.05), a thinner subcutaneous fat width, and a statistically significant decrease in hepatic triglyceride content (5.41±0.59 vs. 21.03±1.40%, P<0.0005). Additionally, the glucose intolerant profile of fatty Zucker rats was completely reversed in treated animals (102.3±2.1 vs. 172.4±1.3 mg/100 mL; P<0.0005). These results reinforce the therapeutic action of VO(dmpp)(2) which shows particular effects on lipid metabolism.


Journal of Inorganic Biochemistry | 1986

1H and 31P NMR study of the interaction of molybdate with the nucleotides adenosine 5'-diphosphate and adenosine 5'-triphosphate

Carlos F. G. C. Geraldes; M. Margarida C. A. Castro

ADP and ATP form in acidic aqueous solutions strong complexes with Mo(VI) oxocations in different stoichiometries. Complexation occurs predominantly, if not exclusively, through the phosphate groups of the nucleotides.

Collaboration


Dive into the M. Margarida C. A. Castro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Costa Pessoa

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamás Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Correia

ISCTE – University Institute of Lisbon

View shared research outputs
Top Co-Authors

Avatar

Isabel Tomaz

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge