M. Massironi
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Massironi.
Astronomy and Astrophysics | 2016
Jean-Baptiste Vincent; N. Oklay; M. Pajola; S. Höfner; H. Sierks; X. Hu; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Michael F. A'Hearn; Maria Antonietta Barucci; I. Bertini; Sebastien Besse; D. Bodewits; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; M. R. El-Maarry; S. Fornasier; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; P. Gutiérrez-Marquez; C. Güttler; M. Hofmann
Dust jets (i.e., fuzzy collimated streams of cometary material arising from the nucleus) have been observed in situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986, and yet their formation mechanism remains unknown. Several solutions have been proposed involving either specific properties of the active areas or the local topography to create and focus the gas and dust flows. While the nucleus morphology seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller jets (a few meters wide) that connect directly to the nucleus surface. Aims. We monitored these jets at high resolution and over several months to understand what the physical processes are that drive their formation and how this affects the surface. Methods. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets and linked them precisely to their sources on the nucleus. Results. We show here observational evidence that the northern hemisphere jets of comet 67P/Churyumov-Gerasimenko arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features and therefore of the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.
Astronomy and Astrophysics | 2015
Olivier Groussin; L. Jorda; A.-T. Auger; E. Kührt; Robert W. Gaskell; Claire Capanna; Frank Scholten; Frank Preusker; P. L. Lamy; S. F. Hviid; J. Knollenberg; Ursula Keller; C. Huettig; H. Sierks; Cesare Barbieri; R. Rodrigo; D. Koschny; Hans Rickman; Michael F. A’Hearn; Jessica Agarwal; M. A. Barucci; I. Bertini; S. Boudreault; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; M. R. El-Maarry; S. Fornasier
We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov- Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morpholo- gies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae’s footprint) and mechani- cal considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain mor- phology: i) low-slope terrains (0–20◦) are covered by a fine material and contain a few large (>10m) and isolated boulders, ii) intermediate-slope terrains (20–45◦) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1 m to 10 m for the majority of them, and iii) high-slope terrains (45 – 90◦ ) are cliffs that expose a consolidated mate- rial and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3 – 15 Pa (upper limit of 150 Pa), 4 – 30 Pa for the shear strength of fine surface materials and boulders, and 30 – 150 Pa for the compressive strength of overhangs (up- per limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.
Astronomy and Astrophysics | 2016
B. Davidsson; H. Sierks; C. Güttler; Francesco Marzari; M. Pajola; Hans Rickman; Michael F. A’Hearn; A.-T. Auger; M. R. El-Maarry; S. Fornasier; Pedro J. Gutierrez; H. U. Keller; M. Massironi; C. Snodgrass; Jean-Baptiste Vincent; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; M. A. Barucci; J.-L. Bertaux; I. Bertini; G. Cremonese; V. Da Deppo; Stefano Debei; M. De Cecco; C. Feller; M. Fulle; Olivier Groussin; S. F. Hviid
We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims. Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods. We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results. We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these observed properties, and additionally explains the presence of extensive layering on 67P/Churyumov-Gerasimenko (and on 9P/Tempel 1 observed by Deep Impact), its bi-lobed shape, the extremely slow growth of comet nuclei as evidenced by recent radiometric dating, and the low collision probability that allows primordial nuclei to survive the age of the solar system. Conclusions. We conclude that observed comet nuclei are primordial rubble piles, and not collisional rubble piles. We argue that TNOs formed as a result of streaming instabilities at sizes below ~400 km and that ~350 of these grew slowly in a low-mass primordial disk to the size of Triton, Pluto, and Eris, causing little viscous stirring during growth. We thus propose a dynamically cold primordial disk, which prevented medium-sized TNOs from breaking into collisional rubble piles and allowed the survival of primordial rubble-pile comets. We argue that comets formed by hierarchical agglomeration out of material that remained after TNO formation, and that this slow growth was a necessity to avoid thermal processing by short-lived radionuclides that would lead to loss of supervolatiles, and that allowed comet nuclei to incorporate ~3 Myr old material from the inner solar system.
Astronomy and Astrophysics | 2016
M. R. El-Maarry; Nicolas Thomas; A. Gracia-Berná; M. Pajola; J.-C. Lee; M. Massironi; B. Davidsson; S. Marchi; H. U. Keller; S. F. Hviid; Sebastien Besse; H. Sierks; Cesare Barbieri; P. L. Lamy; D. Koschny; Hans Rickman; R. Rodrigo; Michael F. A’Hearn; A.-T. Auger; M. A. Barucci; J.-L. Bertaux; I. Bertini; D. Bodewits; G. Cremonese; V. Da Deppo; M. De Cecco; Stefano Debei; C. Güttler; S. Fornasier; M. Fulle
Aims. The OSIRIS camera on board the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)’s nucleus since August 2014. Starting in May 2015, the southern hemisphere gradually became illuminated and was imaged for the first time. Here we present the regional morphology of the southern hemisphere, which serves as a companion to an earlier paper that presented the regional morphology of the northern hemisphere. Methods. We used OSIRIS images that were acquired at orbits ~45−125 km from the center of the comet (corresponding to spatial resolutions of ~0.8 to 2.3 m/pixel) coupled with the use of digital terrain models to define the different regions on the surface, and identify structural boundaries accurately. Results. Seven regions have been defined in the southern hemisphere bringing the total number of defined regions on the surface of the nucleus to 26. These classifications are mainly based on morphological and/or topographic boundaries. The southern hemisphere shows a remarkable dichotomy with its northern counterpart mainly because of the absence of wide-scale smooth terrains, dust coatings and large unambiguous depressions. As a result, the southern hemisphere closely resembles previously identified consolidated regions. An assessment of the overall morphology of comet 67P suggests that the comet’s two lobes show surface heterogeneities manifested in different physical/mechanical characteristics, possibly extending to local (i.e., within a single region) scales.
Astronomy and Astrophysics | 2015
Hans Rickman; S. Marchi; Michael F. A'Hearn; Cesare Barbieri; M. R. El-Maarry; C. Güttler; Wing-Huen Ip; H. U. Keller; P. L. Lamy; Francesco Marzari; M. Massironi; Giampiero Naletto; M. Pajola; H. Sierks; D. Koschny; R. Rodrigo; M. A. Barucci; I. Bertini; G. Cremonese; V. Da Deppo; Stefano Debei; M. De Cecco; S. Fornasier; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; S. F. Hviid; L. Jorda; J. Knollenberg; J.-R. Kramm
Context. One of the main aims of the ESA Rosetta mission is to study the origin of the solar system by exploring comet 67P/Churyumov-Gerasimenko at close range. Aims. In this paper we discuss the origin and evolution of comet 67P/Churyumov-Gerasimenko in relation to that of comets in general and in the framework of current solar system formation models. Methods. We use data from the OSIRIS scientific cameras as basic constraints. In particular, we discuss the overall bi-lobate shape and the presence of key geological features, such as layers and fractures. We also treat the problem of collisional evolution of comet nuclei by a particle-in-a-box calculation for an estimate of the probability of survival for 67P/Churyumov-Gerasimenko during the early epochs of the solar system. Results. We argue that the two lobes of the 67P/Churyumov-Gerasimenko nucleus are derived from two distinct objects that have formed a contact binary via a gentle merger. The lobes are separate bodies, though sufficiently similar to have formed in the same environment. An estimate of the collisional rate in the primordial, trans-planetary disk shows that most comets of similar size to 67P/Churyumov-Gerasimenko are likely collisional fragments, although survival of primordial planetesimals cannot be excluded. Conclusions. A collisional origin of the contact binary is suggested, and the low bulk density of the aggregate and abundance of volatile species show that a very gentle merger must have occurred. We thus consider two main scenarios: the primordial accretion of planetesimals, and the re-accretion of fragments after an energetic impact onto a larger parent body. We point to the primordial signatures exhibited by 67P/Churyumov-Gerasimenko and other comet nuclei as critical tests of the collisional evolution.
Science | 2016
S. Fornasier; S. Mottola; H. U. Keller; M. A. Barucci; B. Davidsson; C. Feller; J. D. P. Deshapriya; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; Michael F. A’Hearn; Jessica Agarwal; J.-L. Bertaux; I. Bertini; Sebastien Besse; G. Cremonese; V. Da Deppo; Stefano Debei; M. De Cecco; J. Deller; M. R. El-Maarry; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; C. Güttler; M. Hofmann; S. F. Hviid
Rosetta observes sublimating surface ices Comets are “dirty snowballs” made of ice and dust, but they are dark because the ice sublimates away, leaving some of the dust behind on the surface. The Rosetta spacecraft has provided a close-up view of the comet 67P/Churyumov-Gerasimenko as it passes through its closest point to the Sun (see the Perspective by Dello Russo). Filacchione et al. detected the spectral signature of solid CO2 (dry ice) in small patches on the surface of the nucleus as they emerged from local winter. By modeling how the CO2 sublimates, they constrain the composition of comets and how ices generate the gaseous coma and tail. Fornasier et al. studied images of the comet and discovered bright patches on the surface where ice was exposed, which disappeared as the ice sublimated. They also saw frost emerging from receding shadows. The surface of the comet was noticeably less red just after local dawn, indicating that icy material is removed by sunlight during the local day. Science, this issue p. 1563, p. 1566; see also p. 1536 Rosetta spotted patches of ice on the surface of a comet, which quickly sublimate in sunlight. The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 square meters) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color are seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.
Astronomy and Astrophysics | 2015
Olivier Groussin; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Michael F. A’Hearn; A.-T. Auger; M. A. Barucci; J.-L. Bertaux; I. Bertini; Sebastien Besse; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; M. R. El-Maarry; S. Fornasier; M. Fulle; Pedro J. Gutierrez; C. Güttler; S. F. Hviid; Wing-Huen Ip; L. Jorda; J. Knollenberg; G. Kovacs; J.-R. Kramm
We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko in the smooth terrains of the Imhotep region. We used images of the OSIRIS cameras onboard Rosetta to follow the temporal changes from 24 May 2015 to 11 July 2015. The morphological changes observed on the surface are visible in the form of roundish features that are growing in size from a given location in a preferential direction at a rate of 5.6-8.1 x 10 -5 m s -1 during the observational period. The location where the changes started and the contours of the expanding features are bluer than the surroundings, which suggests that ices (H 2 O and/or CO 2 are exposed on the surface. However, sublimation of ices alone is not sufficient to explain the observed expanding features. No significant variations in the dust activity pattern are observed during the period of changes.
Monthly Notices of the Royal Astronomical Society | 2016
Jean-Baptiste Vincent; Michael F. A'Hearn; Z.-Y. Lin; M. R. El-Maarry; M. Pajola; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; M. A. Barucci; J.-L. Bertaux; I. Bertini; Sebastien Besse; D. Bodewits; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. Deller; S. Fornasier; M. Fulle; A. Gicquel; Olivier Groussin; Pedro J. Gutierrez; P. Gutiérrez-Marquez
During its two years mission around comet 67P/Churyumov-Gerasimenko, ESAs Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated to the activity of the nucleus, such as localized dust and gas jets. Here we report on series of more energetic transient events observed during the three months surrounding the comets perihelion passage in August 2015. We detected and characterized 34 outbursts with the Rosetta cameras, one every 2.4 nucleus rotation. We identified 3 main dust plume morphologies associated to these events: a narrow jet, a broad fan, and more complex plumes featuring both previous types together. These plumes are comparable in scale and temporal variation to what has been observed on other comets. We present a map of the outbursts source locations, and discuss the associated topography. We find that the spatial distribution sources on the nucleus correlates well with morphological region boundaries, especially in areas marked by steep scarps or cliffs. Outbursts occur either in the early morning or shortly after the local noon, indicating two potential processes: Morning outbursts may be triggered by thermal stresses linked to the rapid change of temperature; afternoon events are most likely related to the diurnal or seasonal heat wave reaching volatiles buried under the first surface layer. In addition, we propose that some events can be the result of a completely different mechanism, in which most of the dust is released upon the collapse of a cliff.
Astronomy and Astrophysics | 2015
F. La Forgia; Lorenza Giacomini; M. Lazzarin; M. Massironi; N. Oklay; Frank Scholten; M. Pajola; I. Bertini; G. Cremonese; Cesare Barbieri; Giampiero Naletto; E. Simioni; Frank Preusker; Nicolas Thomas; H. Sierks; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; A.-T. Auger; Michael F. A’Hearn; M. A. Barucci; Sebastien Besse; D. Bodewits; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco
On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae’s landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of ∼15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
Astronomy and Astrophysics | 2016
M. A. Barucci; G. Filacchione; S. Fornasier; A. Raponi; J. D. P. Deshapriya; F. Tosi; C. Feller; M. Ciarniello; H. Sierks; F. Capaccioni; Antoine Pommerol; M. Massironi; N. Oklay; F. Merlin; Jean-Baptiste Vincent; M. Fulchignoni; A. Guilbert-Lepoutre; D. Perna; M. T. Capria; P. H. Hasselmann; B. Rousseau; Cesare Barbieri; Dominique Bockelee-Morvan; P. L. Lamy; C. De Sanctis; R. Rodrigo; S. Erard; D. Koschny; C. Leyrat; Hans Rickman
Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet’s nucleus. The aim of this work is to search for the presence of H 2 O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H 2 O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination condi- tions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotomet- rically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 μm absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H 2 O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H 2 O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H 2 O ice and dark terrain, using Hapke’s radiative transfer modeling. We also present a detailed analysis of the detected spots.