Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. McCrum is active.

Publication


Featured researches published by M. McCrum.


The Astrophysical Journal | 2013

Super-luminous type Ic supernovae : catching a magnetar by the tail.

C. Inserra; S. J. Smartt; A. Jerkstrand; S. Valenti; M. Fraser; D. Wright; K. W. Smith; Ting-Wan Chen; R. Kotak; Andrea Pastorello; M. Nicholl; Fabio Bresolin; R. P. Kudritzki; Stefano Benetti; M. T. Botticella; W. S. Burgett; K. C. Chambers; Mattias Ergon; H. Flewelling; J. P. U. Fynbo; S. Geier; Klaus-Werner Hodapp; D. A. Howell; M. E. Huber; Nick Kaiser; G. Leloudas; L. Magill; E. A. Magnier; M. McCrum; N. Metcalfe

We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely PTF10hgi, SN2011ke, PTF11rks, SN2011kf and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high resolution, optical and near infrared spectrum from xshooter provides detection of a broad He I �10830 emission line in the spectrum (+50d) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M⊙ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favour energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spindown of a magnetar reproduces the extensive lightcurve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 . E(10 51 erg) . 6.9 and ejecta masses of 2.3 . Mej(M⊙) . 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx - the best sampled SL-SNe Ic so far - point toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic. Subject headings: supernovae: general - supernovae: individual (PTF10hgi, SN 2011ke, PTF11rks, SN 2011kf, SN 2012il) - stars: magnetars


The Astrophysical Journal | 2014

Cosmological Constraints from Measurements of Type Ia Supernovae Discovered During the First 1.5 Yr of the Pan-STARRS1 Survey

Armin Rest; D. Scolnic; Ryan J. Foley; M. Huber; Ryan Chornock; Gautham S. Narayan; John L. Tonry; Edo Berger; Alicia M. Soderberg; Christopher W. Stubbs; Adam G. Riess; Robert P. Kirshner; S. J. Smartt; Edward F. Schlafly; Steven A. Rodney; M. T. Botticella; D. Brout; Peter M. Challis; Ian Czekala; Maria Rebecca Drout; Michael J. Hudson; R. Kotak; C. Leibler; R. Lunnan; G. H. Marion; M. McCrum; D. Milisavljevic; Andrea Pastorello; Nathan Edward Sanders; K. W. Smith

We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields . When combined with BAO+CMB(Planck)+H 0, the analysis yields and including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find , which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results.


Nature | 2013

Slowly fading super-luminous supernovae that are not pair-instability explosions

M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; M. McCrum; R. Kotak; M. Fraser; D. Wright; Ting-Wan Chen; K. W. Smith; D. R. Young; S. A. Sim; S. Valenti; D. A. Howell; Fabio Bresolin; R.-P. Kudritzki; John L. Tonry; M. Huber; Armin Rest; Andrea Pastorello; L. Tomasella; Enrico Cappellaro; Stefano Benetti; Seppo Mattila; E. Kankare; T. Kangas; G. Leloudas; Jesper Sollerman; F. Taddia; Edo Berger

Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1–4. Some evolve slowly, resembling models of ‘pair-instability’ supernovae. Such models involve stars with original masses 140–260 times that of the Sun that now have carbon–oxygen cores of 65–130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron–positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10–16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10−6 times that of the core-collapse rate.


The Astrophysical Journal | 2014

Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies

R. Lunnan; Ryan Chornock; Edo Berger; Tanmoy Laskar; William. Fong; Armin Rest; Nathan Edward Sanders; Peter M. Challis; Maria Rebecca Drout; Ryan J. Foley; M. E. Huber; Robert P. Kirshner; C. Leibler; G. H. Marion; M. McCrum; D. Milisavljevic; Gautham S. Narayan; D. Scolnic; S. J. Smartt; K. W. Smith; Alicia M. Soderberg; John L. Tonry; W. S. Burgett; K. C. Chambers; H. Flewelling; Klaus-Werner Hodapp; Nick Kaiser; E. A. Magnier; P. A. Price; R. J. Wainscoat

We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ~ -17.3 mag), low stellar mass ( ~ 2 x 10^8 M_sun) population, with a high median specific star formation rate ( ~ 2 Gyr^-1). The median metallicity of our spectroscopic sample is low, 12 + log(O/H}) ~ 8.35 ~ 0.45 Z_sun, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly-spinning magnetar in SLSNe and an accreting black hole in LGRBs.


Monthly Notices of the Royal Astronomical Society | 2014

Superluminous supernovae from PESSTO

M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; J. P. Anderson; Charles Baltay; Stefano Benetti; T.-W. Chen; N. Elias-Rosa; U. Feindt; M. Fraser; Avishay Gal-Yam; E. Hadjiyska; D. A. Howell; R. Kotak; A. Lawrence; G. Leloudas; S. Margheim; Seppo Mattila; M. McCrum; R. McKinnon; Alexander Mead; Peter E. Nugent; D. Rabinowitz; Armin Rest; K. W. Smith; Jesper Sollerman; M. Sullivan; F. Taddia; S. Valenti

We present optical spectra and light curves for three hydrogen-poor superluminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a fewdays aftermaximum light to 100 d later shows them to be fairly typical of this class, with spectra dominated by Ca II, MgII, FeII, and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, Ni-56 decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 d after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct rebrightening at around 100 d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionization front breaking out of the ejecta.


Monthly Notices of the Royal Astronomical Society | 2014

The superluminous supernova PS1-11ap: bridging the gap between low and high redshift

M. McCrum; S. J. Smartt; R. Kotak; Armin Rest; A. Jerkstrand; C. Inserra; Steven A. Rodney; Ting-Wan Chen; D. A. Howell; M. Huber; Andrea Pastorello; John L. Tonry; Fabio Bresolin; R.-P. Kudritzki; Ryan Chornock; Edo Berger; K. W. Smith; M. T. Botticella; Ryan J. Foley; M. Fraser; D. Milisavljevic; M. Nicholl; Adam G. Riess; Christopher W. Stubbs; S. Valenti; William Michael Wood-Vasey; D. Wright; D. R. Young; Maria Rebecca Drout; Ian Czekala

We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude ofMu =− 21.4 mag and bolometric luminosity of 8 × 10 43 erg s −1 before settling on to a relatively shallow gradient of decline. The observed decline is significantly slower than those of the SLSNe-Ic which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56 Co decay time-scale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 d before peak to 230 d after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do not match these model explosion parameters well, supporting the recent claim that these SNe are not pair instability explosions. We show that PS1-11ap has many features in common with the faster declining SLSNe-Ic, and the light-curve evolution can also be quantitatively explained by the magnetar spin-down model. At a redshift of z = 0.524, the observer-frame optical coverage provides comprehensive rest-frame UV data and allows us to compare it with the SLSNe recently found at high redshifts between z = 2 and 4. While these high-z explosions


The Astrophysical Journal | 2012

ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES

Edo Berger; Ryan Chornock; R. Lunnan; Ryan J. Foley; Ian Czekala; Armin Rest; C. Leibler; Alicia M. Soderberg; Kathy Roth; Gautham S. Narayan; M. E. Huber; D. Milisavljevic; Nathan Edward Sanders; Maria Rebecca Drout; R. Margutti; Robert P. Kirshner; G. H. Marion; Peter J. Challis; Adam G. Riess; S. J. Smartt; W. S. Burgett; Klaus-Werner Hodapp; James N. Heasley; Nick Kaiser; R. P. Kudritzki; E. A. Magnier; M. McCrum; P. A. Price; K. W. Smith; John L. Tonry

We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultra-luminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z = 1.566 with a peak brightness of MUV ≈ -22.3 mag. PS1-11bam is one of the highest redshift spectroscopically-confirmed SNe known to date. The spectrum is characterized by broad absorption features typical of previous ULSNe (e.g., C II, Si III), and by strong and narrow Mg II and Fe II absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [O II]�3727 emission line at the same redshift. The equivalent widths of the Fe II�2600 and Mg II�2803 lines are in the top quartile of the quasar intervening a bsorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GR B host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of �∗ ≈ 15 - 45 Myr and a stellar mass of M∗ ≈ (1.1 - 2.6)× 10 9 M⊙ (for Z = 0.05 - 1 Z⊙). The star formation rate inferred from the UV continuum and [O II]�3727 emission line is ≈ 10 M⊙ yr -1 , higher than in any previous ULSN host. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the interstellar medium in distant galaxi es. At the present, the depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologica lly interesting redshifts ( z ∼ 1 - 2); the future combination of LSST and 30-m class telescopes promises to extend this technique to z ∼ 4.


Monthly Notices of the Royal Astronomical Society | 2015

Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey

M. McCrum; S. J. Smartt; Armin Rest; K. W. Smith; R. Kotak; Steven A. Rodney; D. R. Young; Ryan Chornock; Edo Berger; Ryan J. Foley; M. Fraser; D. Wright; D. Scolnic; John L. Tonry; Yuji Urata; Kuiyun Huang; Andrea Pastorello; M. T. Botticella; S. Valenti; Seppo Mattila; E. Kankare; Daniel J. Farrow; M. Huber; Christopher W. Stubbs; Robert P. Kirshner; Fabio Bresolin; W. S. Burgett; K. C. Chambers; Peter W. Draper; H. Flewelling

The Pan-STARRS1 (PS1) survey has obtained imaging in 5 bands (grizyP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees . This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as type Ia SNe. There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5-1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximised by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3 +3


Monthly Notices of the Royal Astronomical Society | 2014

PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovae

S. Valenti; F. Yuan; S. Taubenberger; K. Maguire; Andrea Pastorello; Stefano Benetti; S. J. Smartt; Enrico Cappellaro; D. A. Howell; Lars Bildsten; K. Moore; Maximilian D. Stritzinger; J. P. Anderson; S. Benitez-Herrera; F. Bufano; S. González-Gaitán; M. McCrum; G. Pignata; M. Fraser; Avishay Gal-Yam; Laure Guillou; C. Inserra; Daniel E. Reichart; Richard Allen Scalzo; M. Sullivan; Ofer Yaron; D. R. Young

We present optical and infrared monitoring data of SN 2012hn collected by the Public European Southern Observatory Spectroscopic Survey for Transient Objects. We show that SN 2012hn has a faint peak magnitude (MR ? ?15.65) and shows no hydrogen and no clear evidence for helium in its spectral evolution. Instead, we detect prominent Ca?ii lines at all epochs, which relates this transient to previously described ‘Ca-rich’ or ‘gap’ transients. However, the photospheric spectra (from ?3 to +32?d with respect to peak) of SN 2012hn show a series of absorption lines which are unique and a red continuum that is likely intrinsic rather than due to extinction. Lines of Ti?ii and Cr?ii are visible. This may be a temperature effect, which could also explain the red photospheric colour. A nebular spectrum at +150?d shows prominent Ca?ii, O?i, C?i and possibly Mg?i lines which appear similar in strength to those displayed by core-collapse supernovae (SNe). To add to the puzzle, SN 2012hn is located at a projected distance of 6 kpc from an E/S0 host and is not close to any obvious star-forming region. Overall SN 2012hn resembles a group of faint H-poor SNe that have been discovered recently and for which a convincing and consistent physical explanation is still missing. They all appear to explode preferentially in remote locations offset from a massive host galaxy with deep limits on any dwarf host galaxies, favouring old progenitor systems. SN 2012hn adds heterogeneity to this sample of objects. We discuss potential explosion channels including He-shell detonations and double detonations of white dwarfs as well as peculiar core-collapse SNe.


The Astrophysical Journal | 2018

The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample

D. Scolnic; David O. Jones; A. Rest; Y.-C. Pan; Ryan Chornock; Ryan J. Foley; M. E. Huber; Richard Kessler; G. Narayan; Adam G. Riess; Steven A. Rodney; Edo Berger; D. Brout; Peter J. Challis; M. R. Drout; Douglas P. Finkbeiner; R. Lunnan; Robert P. Kirshner; Nathan Edward Sanders; Edward F. Schlafly; S. J. Smartt; Christopher W. Stubbs; John L. Tonry; William Michael Wood-Vasey; M. M. Foley; J. Hand; E. Johnson; W. S. Burgett; K. C. Chambers; Peter W. Draper

Author(s): Scolnic, DM; Jones, DO; Rest, A; Pan, YC; Chornock, R; Foley, RJ; Huber, ME; Kessler, R; Narayan, G; Riess, AG; Rodney, S; Berger, E; Brout, DJ; Challis, PJ; Drout, M; Finkbeiner, D; Lunnan, R; Kirshner, RP; Sanders, NE; Schlafly, E; Smartt, S; Stubbs, CW; Tonry, J; Wood-Vasey, WM; Foley, M; Hand, J; Johnson, E; Burgett, WS; Chambers, KC; Draper, PW; Hodapp, KW; Kaiser, N; Kudritzki, RP; Magnier, EA; Metcalfe, N; Bresolin, F; Gall, E; Kotak, R; McCrum, M; Smith, KW | Abstract:

Collaboration


Dive into the M. McCrum's collaboration.

Top Co-Authors

Avatar

S. J. Smartt

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

K. W. Smith

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Edo Berger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kotak

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Armin Rest

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Ryan J. Foley

University of California

View shared research outputs
Top Co-Authors

Avatar

S. Valenti

University of California

View shared research outputs
Top Co-Authors

Avatar

M. Fraser

University College Dublin

View shared research outputs
Researchain Logo
Decentralizing Knowledge