Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Miele is active.

Publication


Featured researches published by M. Miele.


Journal of Neuroscience Methods | 1998

An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats.

John P. Lowry; M. Miele; Robert D. O'Neill; Martyn G Boutelle; Marianne Fillenz

Amperometric glucose biosensors based on the immobilization of glucose oxidase (GOx) on Pt electrodes with electropolymerized o-phenylenediamine (PPD) were implanted in the right striatum of freely-moving rats. Carbon paste electrodes for the simultaneous monitoring of ascorbic acid (AA) and/or tissue O2 were implanted in the left striatum. A detailed in vivo characterization of the Pt/PPD/GOx signal was carried out using various pharmacological manipulations. Confirmation that the biosensor responded to changing glucose levels in brain extracellular fluid (ECF) was obtained by intraperitoneal (i.p.) injection of insulin that caused a decrease in the Pt/PPD/GOx current, and local administration of glucose (1 mM) via an adjacent microdialysis probe that resulted in an increase in the biosensor current. An insulin induced increase in tissue O2 in the brain was also observed. Interference studies involved administering AA and subanaesthetic doses of ketamine i.p. Both resulted in increased extracellular AA levels with ketamine also causing an increase in O2. No significant change in the Pt/PPD/GOx current was observed in either case indicating that changes in O2 and AA, the principal endogenous interferents, have minimal effect on the response of these first generation biosensors. Stability tests over a successive 5-day period revealed no significant change in sensitivity. These in vivo results suggest reliable glucose monitoring in brain ECF.


Brain Research | 1996

The determination of the extracellular concentration of brain glutamate using quantitative microdialysis

M. Miele; M Berners; Martyn G. Boutelle; H Kusakabe; M Fillenz

Quantitative microdialysis with two enzyme-based assays was used to determine the extracellular concentration of glutamate in the striatum of freely moving rats. From the difference between infused and dialysate glutamate a value of 3.0 +/- 0.6 microM for the extracellular glutamate concentration was computed by regression analysis. The in vivo recovery, derived from the slope of the regression line, was 50%.


Neuropharmacology | 1995

Cellular defence mechanisms in the striatum of young and aged rats subchronically exposed to manganese

Maria Speranza Desole; Giovanni Esposito; Rossana Migheli; Luigia Grazia Fresu; S. Sircana; Danilo Zangani; M. Miele; Egidio Miele

A deficiency of striatal dopamine (DA) is generally accepted as an expression of manganese (Mn) toxicity in experimental animals. Since compromised cellular defence mechanisms may be involved in Mn neurotoxicity, we investigated the response of the neuronal antioxidant system [ascorbic acid (AA) oxidation, glutathione (GSH) and uric acid levels] and neurochemical changes in the striatum in aged rats exposed to Mn. Levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), AA, dehydroascorbic acid (DHAA), GSH and uric acid were determined after subchronic oral exposure to MnCl2 200 mg/kg (3-month-old rats) and 30-100-200 mg/kg (20-month-old-rats). Aged rats had basal levels of striatal DA, DOPAC, HVA, 5-HT, 5-HIAA, GSH and AA lower than those of young rats. In the striatum of aged rats, Mn induced biphasic changes in the levels of DA, DOPAC, HVA (an increase at the lower dose and a decrease at the higher dose) and DHAA (opposite changes). Mn decreased GSH levels and increased uric acid levels both in the striatum and in synaptosomes in all groups of aged rats. All of these parameters were affected to a lesser extent in young rats. In conclusion, the response of cellular defence mechanisms in aged rats is consistent with a Mn-induced increase in the formation of reactive oxygen species. An age-related impairment of the neuronal antioxidant system may play an enabling role in Mn neurotoxicity.


British Journal of Pharmacology | 2000

On the mechanism of d-amphetamine-induced changes in glutamate, ascorbic acid and uric acid release in the striatum of freely moving rats

M. Miele; Maria A. Mura; Paolo Enrico; Giovanni Esposito; Pier Andrea Serra; Rossana Migheli; Danilo Zangani; Egidio Miele; Maria Speranza Desole

The effects of systemic, intrastriatal or intranigral administration of d‐amphetamine on glutamate, aspartate, ascorbic acid (AA), uric acid, dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5‐hydroxyindoleacetic acid (5‐HIAA) concentrations in dialysates from the striatum of freely‐moving rats were evaluated using microdialysis. d‐Amphetamine (2 mg kg−1) given subcutaneously (s.c.) increased DA, AA and uric acid and decreased DOPAC+HVA, glutamate and aspartate dialysate concentrations over a 3 h period after d‐amphetamine. 5‐HIAA concentrations were unaffected. Individual changes in glutamate and AA dialysate concentrations were negatively correlated. d‐Amphetamine (0.2 mM), given intrastriatally, increased DA and decreased DOPAC+HVA and aspartate dialysate concentrations, but failed to change those of glutamate, AA uric acid or 5‐HIAA, over a 2 h period after d‐amphetamine. Haloperidol (0.1 mM), given intrastriatally, increased aspartate concentrations without affecting those of glutamate or AA. d‐Amphetamine (0.2 mM), given intranigrally, increased AA and uric acid dialysate concentrations and decreased those of glutamate, aspartate and DA; DOPAC+HVA and 5‐HIAA concentrations were unaffected. These results suggest that d‐amphetamine‐induced increases in AA and uric acid and decreases in glutamate concentrations are triggered at nigral sites. The changes in aspartate levels may be evoked by at least two mechanisms: striatal (mediated by inhibitory dopaminergic receptors) and nigral (activation of amino acid carrier‐mediated uptake).


Brain Research | 1998

Effect of naloxone on morphine-induced changes in striatal dopamine metabolism and glutamate, ascorbic acid and uric acid release in freely moving rats

Paolo Enrico; Maria A. Mura; Giovanni Esposito; Pier Andrea Serra; Rossana Migheli; Guglielmo De Natale; Maria Speranza Desole; M. Miele; Egidio Miele

Recent findings have shown that systemic morphine increases extracellular dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), ascorbic acid (AA) and uric acid concentrations in the striatum of freely moving rats. The morphine-induced increase in DA oxidative metabolism is highly correlated with that of xanthine. In the present study, we evaluated the effects of subcutaneous (s.c.) naloxone (1 mg/kg) on morphine-induced changes in DA, DOPAC, HVA, 5-hydroxyindoleacetic acid (5-HIAA), AA, uric acid and glutamate in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection or (glutamate) ultraviolet detection. Morphine (5-20 mg/kg) given s.c. increased DA, DOPAC+HVA, 5-HIAA, AA and uric acid and decreased glutamate dialysate concentrations over a 3 h period after morphine. Morphine (1 mM), given intrastriatally, did not affect all the above parameters, with the exception of an early short-lasting decrease in AA concentration. Naloxone antagonised all morphine-induced changes with the exception of AA increase and glutamate decrease in dialysate concentrations. Systemic or intrastrial (0.2-2 mM) naloxone increased AA and decreased glutamate dialysate concentrations. When given intranigrally, morphine (1 mM) increased DOPAC+HVA, AA and uric acid and decreased glutamate dialysate concentrations over a 2 h period after morphine; DA and 5-HIAA concentrations were unaffected. These results suggest that: (i) morphine increases striatal DA release and 5-hydroxytryptamine oxidative metabolism by a micro-opioid receptor-mediated mechanism mainly at extranigrostriatal sites; (ii) morphine increases DA and xanthine oxidative metabolism and affects glutamate and AA release by a micro-opioid receptor mediated mechanism acting also at nigral sites; and (iii) a micro-opioid receptor-mediated mechanism tonically controls at striatal sites extracellular AA and glutamate concentrations.


British Journal of Pharmacology | 2000

Manganese increases L‐DOPA auto‐oxidation in the striatum of the freely moving rat: potential implications to L‐DOPA long‐term therapy of Parkinson's disease

Pier Andrea Serra; Giovanni Esposito; Paolo Enrico; Maria A. Mura; Rossana Migheli; M Rosaria Delogu; M. Miele; Maria Speranza Desole; Giuseppe Enrico Grella; Egidio Miele

We have previously shown that manganese enhances L‐dihydroxyphenylanine (L‐DOPA) toxicity to PC12 cells in vitro. The supposed mechanism of manganese enhancing effect [an increase in L‐DOPA and dopamine (DA) auto‐oxidation] was studied using microdialysis in the striatum of freely moving rats. Systemic L‐DOPA [25 mg kg−1 intraperitoneally (i.p.) twice in a 12 h interval] significantly increased baseline dialysate concentrations of L‐DOPA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and uric acid, compared to controls. Conversely, DA and ascorbic acid concentrations were significantly decreased. A L‐DOPA oxidation product, presumptively identified as L‐DOPA semiquinone, was detected in the dialysate. The L‐DOPA semiquinone was detected also following intrastriatal infusion of L‐DOPA. In rats given L‐DOPA i.p., intrastriatal infusion of N‐acetylcysteine (NAC) significantly increased DA and L‐DOPA dialysate concentrations and lowered those of L‐DOPA semiquinone; in addition, NAC decreased DOPAC+HVA and uric acid dialysate concentrations. In rats given L‐DOPA either systemically or intrastriatally, intrastriatal infusion of manganese decreased L‐DOPA dialysate concentrations and greatly increased those of L‐DOPA semiquinone. These changes were inhibited by NAC infusion. These findings demonstrate that auto‐oxidation of exogenous L‐DOPA occurs in vivo in the rat striatum. The consequent reactive oxygen species generation may account for the decrease in dialysate DA and ascorbic acid concentrations and increase in enzymatic oxidation of xanthine and DA. L‐DOPA auto‐oxidation is inhibited by NAC and enhanced by manganese. These results may be of relevance to the L‐DOPA long‐term therapy of Parkinsons disease.


Neuroscience Letters | 1993

Correlation between 1-methyl-4-phenylpyridinium ion (MPP+) levels, ascorbic acid oxidation and glutathione levels in the striatal synaptosomes of the 1-methyl-4-phenyl-1,2,3-6-tetrahydropyridine (MPTP)-treated rat

Maria Speranza Desole; Giovanni Esposito; Luigia Grazia Fresu; Rossana Migheli; Paolo Enrico; M. Miele; G. De Natale; Egidio Miele

In 6-month-old male Wistar rats, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), dehydroascorbic acid (DHAA), uric acid, glutathione (GSH) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined by HPLC in the crude striatal synaptosomal fraction after single injections of MPTP 35 mg/kg i.p. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced a 32.5% death rate within 15 min to 10 h. Groups of surviving rats were sacrificed 1, 3, 8 and 24 h after MPTP. MPTP significantly increased levels of DHAA and uric acid and decreased levels of DOPAC and GSH. Individual synaptosomal levels of MPP+ were correlated inversely with DOPAC (r = -0.601, P < 0.002) and GSH levels (r = -0.496, P < 0.02) and directly with levels of uric acid (r = +0.627, P < 0.001); these latter, in turn, were correlated with DHAA (r = +0.418, P < 0.05) and GSH levels (r = -0.357, P = 0.07). In conclusion, the response of the endogenous antioxidant system (increase in AA oxidation, decrease in GSH levels) correlates well with the MPTP-induced increase in uric acid levels and provides further evidence for a mechanism of MPTP neurotoxicity involving oxidative stress produced by xanthine oxidase.


Archives of Toxicology | 1994

Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese

Maria Speranza Desole; M. Miele; Giovanni Esposito; Rossana Migheli; Luigia Grazia Fresu; G. De Natale; Egidio Miele

In 6-month-old male Wistar rats, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), dehydroascorbic acid (DHAA), uric acid and glutathione (GSH) were determined by HPLC in the striatum and striatal synaptosomes after subchronic oral exposure to MnCl2 50–100–150 mg/kg. Mn significantly decreased levels of DA and GSH and increased levels of DHAA and uric acid both in the striatum and synaptosomes. In synaptosomes, individual total Mn doses/rat were directly correlated with individual DOPAC/DA ratio values (r=+0.647), uric acid (r=+0.532) and DHAA levels (r=+0.889) and inversely correlated with DA (r=−0.757) and GSH levels (r=−0.608). In turn, GSH levels were inversely correlated with uric acid (r=−0.451) and DHAA levels (r=−0.460). In conclusion, the response of striatal cellular defense mechanisms (increase in AA oxidation, decrease in GSH levels) correlated well with changes in markers of dopaminergic system activity and increase in uric acid levels. The latter provides evidence of an Mn-induced oxidative stress mediated by xanthine oxidase.


Brain Research | 1997

Effect of morphine on striatal dopamine metabolism and ascorbic and uric acid release in freely moving rats

Paolo Enrico; Giovanni Esposito; Maria A. Mura; Luigia Grazia Fresu; Guglielmo De Natale; Egidio Miele; Maria Speranza Desole; M. Miele

Recent ex vivo findings have shown that morphine increases dopamine (DA) and xanthine oxidative metabolism and ascorbic acid (AA) oxidation in the rat striatum. In the present study, we evaluated the effects of subcutaneous daily morphine (20 mg/kg) administration on DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), AA and uric acid in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection. On the first day, morphine administration caused a significant increase in extracellular DA, DOPAC, HVA, AA and uric acid concentrations over a 3 h period after morphine. In all treated rats (n = 7), individual concentrations of DOPAC + HVA were directly correlated with individual AA and uric acid concentrations. Last morphine administration on the 4th day increased DOPAC, HVA, AA and uric acid concentrations but failed to increase those of DA. Individual DOPAC + HVA concentrations were still directly correlated with individual AA and uric acid concentrations. These results suggest that systemic morphine increases both striatal DA release and DA and xanthine oxidative metabolism. Only the former effect undergoes tolerance. The increase in DA oxidative metabolism is highly correlated with that of xanthine. The subsequent enhancement in reactive oxygen species production may account for the increase in extracellular AA.


Brain Research | 1996

Effects of morphine treatment and withdrawal on striatal and limbic monoaminergic activity and ascorbic acid oxidation in the rat.

Maria Speranza Desole; Giovanni Esposito; Luigia Grazia Fresu; Rossana Migheli; Paolo Enrico; Maria A. Mura; Guglielmo De Natale; Egidio Miele; M. Miele

Since ascorbic acid (AA) reportedly suppresses tolerance to and dependence on morphine in humans and rodents, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), AA, dehydroascorbic acid (DHAA), uric acid, xanthine, hypoxanthine, glutamate and gamma-aminobutyric acid (GABA) were determined by high-pressure liquid chromatography (HPLC) in the striatum and in the limbic forebrain of the rat following morphine treatment (single or repeated) and withdrawal. Single morphine administration (20 mg/kg s.c.) increased DOPAC + HVA/DA, 5-HIAA/5-HT and DHAA/AA ratios, uric acid levels, and decreased xanthine, hypoxanthine, glutamate and GABA levels in both regions. 3-MT levels were decreased in the striatum and increased in the limbic forebrain. After 7 days of morphine treatment, striatal DOPAC + HVA/DA and DHAA/AA ratios and uric acid levels were still higher and striatal and limbic xanthine levels still lower than in controls, while all other parameters were in the range of control values in both regions. Morphine treatment also increased the glutamate/GABA ratio in the striatum. In all morphine-treated rats, individual striatal DOPAC + HVA/DA and DHAA/AA ratio values were directly correlated. After a 48 h withdrawal period, both striatal AA oxidation and glutamate/GABA ratio further increased; limbic 3-MT levels further decreased, while all other parameters did not differ from control values. We conclude that: (i) tolerance to morphine-induced increase in hypoxanthine, xanthine and AA oxidation develops in the limbic forebrain faster than in the striatum; (ii) the morphine-induced increase in striatal and limbic AA oxidation may be considered a consequence of increased formation of reactive oxygen species due to increased DA, hypoxanthine and xanthine oxidative metabolism; (iii) a striatal excitotoxic imbalance characterizes the withdrawal state and may be taken into account to explain the further increase in striatal AA oxidation.

Collaboration


Dive into the M. Miele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge