Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Minuti is active.

Publication


Featured researches published by M. Minuti.


Experimental Astronomy | 2013

XIPE: the X-ray imaging polarimetry explorer

Paolo Soffitta; X. Barcons; R. Bellazzini; Joao Braga; Enrico Costa; George W. Fraser; Szymon Gburek; J. Huovelin; Giorgio Matt; M. Pearce; Juri Poutanen; V. Reglero; A. Santangelo; R. Sunyaev; Gianpiero Tagliaferri; Martin C. Weisskopf; Roberto Aloisio; E. Amato; Primo Attinà; Magnus Axelsson; L. Baldini; S. Basso; Stefano Bianchi; Pasquale Blasi; J. Bregeon; Alessandro Brez; N. Bucciantini; L. Burderi; Vadim Burwitz; P. Casella

Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.


Journal of Instrumentation | 2013

Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

R. Bellazzini; G. Spandre; A. Brez; M. Minuti; Michele Pinchera; P. Mozzo

An innovative X-ray imaging sensor based on Chromatic Photon Counting technology with intrinsic digital characteristics is presented. The system counts individually the incident X-ray photons and selects them according to their energy to produce two color images per exposure. The energy selection occurs in real time and at radiographic imaging speed (GHz global counting rate). Photon counting, color mode and a very fine spatial resolution (more than 10 LP/mm at MTF50) allow to obtain a high ratio between image quality and absorbed dose. The individual building block of the imaging system is a two-side buttable semiconductor radiation detector made of a thin pixellated CdTe crystal coupled to a large area VLSI CMOS pixel ASIC. Modules with 1, 2, 4, and 8 block units have been built. The largest module has 25 × 2.5 cm2 sensitive area. Results and images obtained from testing different modules are presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004

Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode

R. Bellazzini; F. Angelini; L. Baldini; Francesco Bitti; A. Brez; M. Ceccanti; L. Latronico; Marco Maria Massai; M. Minuti; N. Omodei; M. Razzano; C. Sgrò; G. Spandre; Enrico Costa; Paolo Soffitta

Abstract In MicroPattern Gas Detectors (MPGD) when the pixel size is below 100 μ m and the number of pixels is large (above 1000) it is virtually impossible to use the conventional PCB read-out approach to bring the signal charge from the individual pixel to the external electronics chain. For this reason a custom CMOS array of 2101 active pixels with 80 μ m pitch, directly used as the charge collecting anode of a GEM amplifying structure, has been developed and built. Each charge collecting pad, hexagonally shaped, realized using the top metal layer of a deep submicron VLSI technology is individually connected to a full electronics chain (pre-amplifier, shaping-amplifier, sample & hold, multiplexer) which is built immediately below it by using the remaining five active layers. The GEM and the drift electrode window are assembled directly over the chip so the ASIC itself becomes the pixelized anode of a MPGD. With this approach, for the first time, gas detectors have reached the level of integration and resolution typical of solid-state pixel detectors. Results from the first tests of this new read-out concept are presented. An Astronomical X-ray Polarimetry application is also discussed.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008

Low energy polarization sensitivity of the Gas Pixel Detector

Fabio Muleri; Paolo Soffitta; L. Baldini; R. Bellazzini; J. Bregeon; A. Brez; Enrico Costa; M. Frutti; L. Latronico; M. Minuti; Maria Barbara Negri; N. Omodei; M. Pesce-Rollins; Michele Pinchera; M. Razzano; A. Rubini; C. Sgrò; G. Spandre

An X-ray photoelectric polarimeter based on the Gas Pixel Detector has been proposed to be included in many upcoming space missions to fill the gap of about 30 years from the first (and to date only) positive measurement of polarized X-ray emission from an astrophysical source. The estimated sensitivity of the current prototype peaks at an energy of about 3 keV, but the lack of readily available polarized sources in this energy range has prevented the measurement of detector polarimetric performances. In this paper we present the measurement of the Gas Pixel Detector polarimetric sensitivity at energies of a few keV and the new, light, compact and transportable polarized source that was devised and built to this aim. Polarized photons are produced, from unpolarized radiation generated with an X-ray tube, by means of Bragg diffraction at nearly 45 ◦ . The diffraction angle is constrained with two orthogonal capillary plates, which allow good collimation with limited size thanks to the 10 µm diameter holes. Polarized photons at energy as low as a few keV can be produced with a proper choice of diffracting crystal, while the maximum energy is limited by the X-ray tube voltage, since all the orders defined by the crystal lattice spacing are diffracted. The best trade-off between reasonable fluxes and high degree of polarization can be achieved selecting the degree of collimation provided by capillary plates. The employment of mosaic graphite and flat aluminum crystals allow the production of nearly completely polarized photons at 2.6, 3.7 and 5.2 keV from the diffraction of unpolarized continuum or line emission. The measured modulation factor of the Gas Pixel Detector at these energies is in good agreement with the estimates derived from a Monte Carlo software, which was up to now employed for driving the development of the instrument and for estimating its low energy sensitivity. In this paper we present the excellent polarimetric performance of the Gas Pixel Detector at energies where the peak sensitivity is expected. These measurements not only support our previous claims of high sensitivity but confirm the feasibility of astrophysical X-ray photoelectric polarimetry.


Experimental Astronomy | 2010

POLARIX: a pathfinder mission of X-ray polarimetry

Enrico Costa; R. Bellazzini; Gianpiero Tagliaferri; Giorgio Matt; A. Argan; Primo Attinà; L. Baldini; S. Basso; Alessandro Brez; Oberto Citterio; Sergio Di Cosimo; Vincenzo Cotroneo; Sergio Fabiani; M. Feroci; Antonella Ferri; Luca Latronico; Francesco Lazzarotto; M. Minuti; E. Morelli; Fabio Muleri; Lucio Nicolini; Giovanni Pareschi; Giuseppe Di Persio; Michele Pinchera; M. Razzano; Luigia Reboa; A. Rubini; Antonio Salonico; C. Sgrò; Paolo Soffitta

Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2010

Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether

Fabio Muleri; Paolo Soffitta; L. Baldini; R. Bellazzini; A. Brez; Enrico Costa; Sergio Fabiani; F. Krummenacher; L. Latronico; F. Lazzarotto; M. Minuti; Michele Pinchera; A. Rubini; C. Sgrò; G. Spandre

The Gas Pixel Detector belongs to the very limited class of gas detectors optimized for the measurement of X-ray polarization in the emission of astrophysical sources. The choice of the mixture in which X-ray photons are absorbed and photoelectrons propagate, deeply affects both the energy range of the instrument and its performance in terms of gain, track dimension and ultimately, polarimetric sensitivity. Here we present the characterization of the Gas Pixel Detector with a 1 cm thick cell filled with dimethyl ether (DME) at 0.79 atm, selected among other mixtures for the very low diffusion coefficient. Almost completely polarized and monochromatic photons were produced at the calibration facility built at INAF/IASF-Rome exploiting Bragg diffraction at nearly 45 degrees. For the first time ever, we measured the modulation factor and the spectral capabilities of the instrument at energies as low as 2.0 key, but also at 2.6, 3.7, 4.0, 5.2 and 7.8 key. These measurements cover almost completely the energy range of the instrument and allows to compare the sensitivity achieved with that of the standard mixture, composed of helium and DME


ieee nuclear science symposium | 2005

The silicon tracker readout electronics of the Gamma-ray Large Area Space Telescope

L. Baldini; Alessandro Brez; Thomas Himel; M. Hirayama; R. P. Johnson; W. Kroeger; Luca Latronico; M. Minuti; D. Nelson; R. Rando; H. Sadrozinski; C. Sgrò; G. Spandre; E. Spencer; M. Sugizaki; H. Tajima; Johann Cohen-Tanugi; Marcus Ziegler

A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884 736 36-cm strips using only 160 W of power, and it achieves close to 100% detection efficiency with noise occupancy sufficiently low to allow it to self trigger. The design of the readout system is described, and results are presented from ground-based testing of the completed detector system.


Proceedings of SPIE | 2010

A set of x-ray polarimeters for the New Hard X-ray Imaging and Polarimetric Mission

Paolo Soffitta; Enrico Costa; Fabio Muleri; R. Campana; Ettore Del Monte; Sergio Di Cosimo; Yuri Evangelista; Sergio Fabiani; M. Feroci; Francesco Lazzarotto; A. Rubini; R. Bellazzini; Alessandro Brez; M. Minuti; N. Omodei; Michele Pinchera; M. Razzano; C. Sgrò; G. Spandre; A. Argan; Giorgio Matt

The New Hard X-Ray Imaging and Polarimetric Mission makes a synergic use of Hard X-Ray Imaging, Spectroscopy and Polarimetry, as independent diagnostic of the same physical systems. It exploits the technology of multi-layer optics that, with a focal length of 10 m, allow for spectroscopic and imaging, with a resolution from 15 to 20 arcseconds, on the band 0.2 - 80 keV. One of the four telescopes is devoted to polarimetry. Since the band of a photoelectric polarimeter is not that wide, we foresee two of them, one tuned on the lower energy band (2-10 keV) and another one tuned on higher energies (6 - 35 keV). The blurring due to the inclined penetration of photons in the gas , thanks to the long focal length is practically negligible. In practice the polarimeters fully exploit the resolution the telescope and NHXM can perform angular resolved simultaneous spectroscopy and polarimetry on the band 2 - 35 keV. We are also studying the possibility to extend the band up to 80 keV by means of a focal plane scattering polarimeter.


Astrophysical Journal Supplement Series | 2014

THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

Sergio Fabiani; Enrico Costa; E. Del Monte; Fabio Muleri; Paolo Soffitta; A. Rubini; R. Bellazzini; A. Brez; L. De Ruvo; M. Minuti; Michele Pinchera; C. Sgrò; G. Spandre; D. Spiga; G. Tagliaferri; Giovanni Pareschi; S. Basso; Oberto Citterio; Vadim Burwitz; Wolfgang Burkert; Benedikt Menz; Gisela D. Hartner

ABSTRACTX-rays are particularly suited to probe the physics of extreme objects. However, despite the enormousimprovements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largelyunexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as an instrumentcandidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focusof a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measurethe energy, the position, the arrival time and the polarization angle of every single photon, allows toperform polarimetry of subsets of data singled out from the spectrum, the light curve or the imageof source. The GPD has an intrinsic very fine imaging capability and in this work we report on thecalibrationcampaign carriedout in 2012at the PANTER X-raytest facility of the Max-Planck-Institutfu¨r extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to aJET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV.This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) inresponse to the ESA call for a small mission. We derived the imaging and polarimetric performancefor extended sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the XIPEconfiguration, discussing also possible improvements by coupling the detector with advanced optics,having finer angular resolution and larger effective area, to study with more details extended objects.Keywords: X-ray polarimetry, X-ray telescope, angular resolution


1st Gamma-ray Large Area Space Telescope Symposium, GLAST, 5 February 2007 through 8 February 2007, Stanford, CA, United States | 2007

Preliminary results of the LAT Calibration Unit beam tests

L. Baldini; G. Barbiellini; R. Bellazzini; J.R. Bogart; G. Bogaert; E. Bonamente; J. Bregeon; A. Brez; M. Brigida; A. W. Borgland; P. Bruel; G. A. Caliandro; C. Cecchi; F. P. Ceglie; E. Charles; A. Chekhtman; R. Claus; J. Cohen-Tanugi; E. Do Couto E Silva; R. Dubois; J. Conrad; D. Dumora; C. Favuzzi; Z. Fewtrell; W. B. Focke; S. Funk; P. Fusco; F. Gargano; S. Germani; B. Giebels

The calibration strategy of the GLAST Large Area Telescope (LAT) combines analysis of cosmic ray data with accelerator particle beams measurements. An advanced Monte Carlo simulation of the LAT, based on the Geant4 package, was set up to reproduce the LAT response to such radiation and to benchmark the event reconstruction and the background rejection strategy before launch and during operation. To validate the LAT simulation, a massive campaign of beam tests was performed between July and November 2006, in parallel with the LAT integration and test, on the LAT Calibration Unit. This is a detector built with spare flight modules and flight‐like readout electronics, which was exposed to a large variety of beams, representing the whole spectrum of the signal that will be detected by the LAT, using the CERN and the GSI accelerator facilities. Beams of photons (0 – 2.5 GeV), electrons (1 – 300 GeV), hadrons (π and p, a few GeV – 100 GeV) and ions (C; Xe, 1.5 GeV/n) were shot through the CU to measure the phys...

Collaboration


Dive into the M. Minuti's collaboration.

Top Co-Authors

Avatar

R. Bellazzini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

G. Spandre

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Michele Pinchera

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

L. Baldini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Alessandro Brez

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

C. Sgrò

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

A. Brez

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge