M. Monti
Mediterranean University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Monti.
The Journal of Agricultural Science | 2007
Michael Gooding; E. Kasyanova; R. E. Ruske; Henrik Hauggaard-Nielsen; Erik Steen Jensen; C. Dahlmann; P. von Fragstein; A. Dibet; Guénaëlle Corre-Hellou; Yves Crozat; A. Pristeri; M. Romeo; M. Monti; Marie Launay
SUMMARY The effects of intercropping wheat with faba bean (Denmark, Germany, Italy and UK) and wheat with pea (France), in additive and replacement designs on grain nitrogen and sulphur concentrations were studied in field experiments in the 2002/03, 2003/04 and 2004/05 growing seasons. Inter- cropping wheat with grain legumes regularly increased the nitrogen concentration of the cereal grain, irrespective of design or location. Sulphur concentration of the cereal was also increased by inter- cropping, but less regularly and to a lesser extent compared with effects on nitrogen concentration. Nitrogen concentration (g/kg) in wheat additively intercropped with faba bean was increased by 8 % across all sites (weighted for inverse of variance), but sulphur concentration was only increased by 4 %, so N :S ratio was also increased by 4 %. Intercropping wheat with grain legumes increased sodium dodecyl sulphate (SDS)-sedimentation volume. The effect of intercropping on wheat nitrogen concentration was greatest when intercropping had the most deleterious effect on wheat yield and the least deleterious effect on pulse yield. Over all sites and seasons, and irrespective of whether the design was additive or replacement, increases in crude protein concentration in the wheat of 10 g/kg by intercropping with faba bean were associated with 25-30 % yield reduction of the wheat, compared with sole-cropped wheat. It was concluded that the increase in protein concentration of wheat grain in intercrops could be of economic benefit when selling wheat for breadmaking, but only if the bean crop was also marketed effectively.
Nutrient Cycling in Agroecosystems | 2009
Henrik Hauggaard-Nielsen; Michael Gooding; Per Ambus; Guénaëlle Corre-Hellou; Yves Crozat; C. Dahlmann; A. Dibet; P. von Fragstein; A. Pristeri; M. Monti; Erik Steen Jensen
Grain legumes are known to increase the soil mineral nitrogen (N) content, reduce the infection pressure of soil borne pathogens, and hence enhance subsequent cereals yields. Replicated field experiments were performed throughout W. Europe (Denmark, United Kingdom, France, Germany and Italy) to asses the effect of intercropping pea and barley on the N supply to subsequent wheat in organic cropping systems. Pea and barley were grown either as sole crops at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs. In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark and the United Kingdom included subsequent spring wheat with grass-clover as catch crops. The experiment was repeated over the three cropping seasons of 2003, 2004 and 2005. Irrespective of sites and intercrop design pea–barley intercropping improved the plant resource utilization (water, light, nutrients) to grain N yield with 25–30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected by the preceding crops. Under the following winter wheat, the lowest mineral N content was generally found in early spring. Variation in soil mineral N content under the winter wheat between sites and seasons indicated a greater influence of regional climatic conditions and long-term cropping history than annual preceding crop and residue quality. Just as with the soil mineral N, the subsequent crop response to preceding crop was negligible. Soil N balances showed general negative values in the 2-year period, indicating depletion of N independent of preceding crop and cropping strategy. It is recommended to develop more rotational approaches to determine subsequent crop effects in organic cropping systems, since preceding crop effects, especially when including legumes, can occur over several years of cropping.
Scientific Reports | 2016
Federico Vita; Cosimo Taiti; Antonio Pompeiano; Zuguang Gu; Emilio Lo Presti; Larisa Whitney; M. Monti; Giuseppe Di Miceli; Dario Giambalvo; Paolo Ruisi; Lorenzo Guglielminetti; Stefano Mancuso
In this paper volatile organic compounds (VOCs) from durum wheat cultivars and landraces were analyzed using PTR-TOF-MS. The aim was to characterize the VOC’s profile of the wholemeal flour and of the kernel to find out if any VOCs were specific to varieties and sample matrices. The VOC data is accompanied by SDS-PAGE analyses of the storage proteins (gliadins and glutenins). Statistical analyses was carried out both on the signals obtained by MS and on the protein profiles. The difference between the VOC profile of two cultivars or two preparations of the same sample - matrices, in this case kernel vs wholemeal flour - can be very subtle; the high resolution of PTR-TOF-MS - down to levels as low as pptv - made it possible to recognize these differences. The effects of grinding on the VOC profiles were analyzed using SIMPER and Tanglegram statistical methods. Our results show that it is possible describe samples using VOC profiles and protein data.
Field Crops Research | 2009
Henrik Hauggaard-Nielsen; Michael Gooding; Per Ambus; Guénaëlle Corre-Hellou; Yves Crozat; C. Dahlmann; A. Dibet; P. von Fragstein; A. Pristeri; M. Monti; Erik Steen Jensen
Field Crops Research | 2011
Guénaëlle Corre-Hellou; A. Dibet; Henrik Hauggaard-Nielsen; Yves Crozat; Michael Gooding; Per Ambus; C. Dahlmann; P. von Fragstein; A. Pristeri; M. Monti; Erik Steen Jensen
1st European Joint Organic Congress | 2006
Erik Steen Jensen; Per Ambus; N. Bellostas; S. Boisen; Nadine Brisson; Guénaëlle Corre-Hellou; Yves Crozat; C. Dahlmann; A. Dibet; P. von Fragstein; Michael Gooding; Henrik Hauggaard-Nielsen; E. Kasyanova; Marie Launay; M. Monti; A. Pristeri
Soil Biology & Biochemistry | 2015
Antonella Scalise; Demetrio Tortorella; A. Pristeri; Beatrix Petrovičová; Antonio Gelsomino; Kristina Lindström; M. Monti
Archive | 2006
Henrik Hauggaard-Nielsen; Per Ambus; N. Bellostas; S. Boisen; Nadine Brisson; Guénaëlle Corre-Hellou; Yves Crozat; C. Dahlmann; A. Dibet; P. von Fragstein; Michael Gooding; E. Kasyanova; Marie Launay; M. Monti; A. Pristeri; Erik Steen Jensen
Field Crops Research | 2016
M. Monti; Antonio Pellicanò; Carmelo Santonoceto; Giovanni Preiti; A. Pristeri
Italian Journal of Agronomy | 2010
Monica Bacchi; Maria Leone; Francesco Mercati; Giovanni Preiti; Francesco Sunseri; M. Monti