M. Motasim Billah
Schering-Plough
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Motasim Billah.
Current Opinion in Immunology | 1993
M. Motasim Billah
Phospholipase D, which hydrolyzes phospholipids (primarily phosphatidylcholine) to generate phosphatidic acid, has emerged as a critical component in cellular signal transduction. Research during the past year has confirmed and extended the view that phosphatidic acid and its dephosphorylated product, sn-1,2-diacylglycerol, are important intracellular second messengers and that the coupling of phospholipase D to specific receptors occurs through multiple mechanisms involving protein kinase C, protein tyrosine kinase, Ca2+ and GTP-binding proteins.
The Journal of Allergy and Clinical Immunology | 1997
Shelby P. Umland; D.Kyle Nahrebne; Shad Razac; Andrew J. Beavis; Kenneth J. Pennline; Robert W. Egan; M. Motasim Billah
This study was conducted to directly compare the in vitro efficacy and potency of several glucocorticoids in inhibiting T-cell cytokine production. The glucocorticoids tested were fluticasone propionate, budesonide, triamcinolone acetonide, and beclomethasone dipropionate, which are currently inhaled therapies for the treatment of allergic airway disease. Also used were betamethasone phosphate and the newly developed mometasone furorate. With a novel cell culture system, purified peripheral blood CD4+ T cells from normal donors were stimulated with immobilized anti-CD3 and soluble anti-CD28 monoclonal antibodies to induce high levels of IL-4, IL-5, and interferon-gamma. By cell sorting, it was found that the IL-5 produced originated from memory cells, whereas both memory and naive cells produced interferon-gamma. Mometasone and fluticasone inhibited IL-5 and IL-4 similarly (mometasone IL-5 inhibitory concentration of 50% = 0.27 +/- 0.1 nmol/L and IL-4 = 0.19 +/- 0.08 nmol/L). For both cytokines, the results indicate that mometasone and fluticasone were more potent than beclomethasone, triamcinolone, budesonide, and betamethasone. Of clinical importance is the finding that all steroids demonstrated less efficacy versus interferon-gamma than IL-4 and IL-5. Glucocorticoid reduction of Th2 cytokines with lesser effects on interferon-gamma would serve to reverse the exaggerated Th2 response that contributes to pathophysiology observed in allergic disease. Therefore the use of topically active glucocorticoids with low systemic bioactivity for the treatment of allergic inflammation may be particularly effective in modulating the cytokine activity that is an important component of the allergic response.
Journal of Pharmacology and Experimental Therapeutics | 2007
Richard W. Chapman; Michael Minnicozzi; Chander Celly; Jonathan E. Phillips; Ted T. Kung; R. William Hipkin; Xuedong Fan; Diane Rindgen; Gregory Deno; Richard W. Bond; Waldemar Gonsiorek; M. Motasim Billah; Jay S. Fine; John A. Hey
Sch527123 [2-hydroxy-N,N-dimethyl-3-[[2-[[1(R)-(5-methyl-2-furanyl)propyl]amino]-3,4-dioxo-1-cyclobuten-1-yl]amino]ben-zamide] is a potent, selective antagonist of the human CXCR1 and CXCR2 receptors (Gonsiorek et al., 2007). Here we describe its pharmacologic properties at rodent CXCR2 and at the CXCR1 and CXCR2 receptors in the cynomolgus monkey, as well as its in vivo activity in models demonstrating prominent pulmonary neutrophilia, goblet cell hyperplasia, and mucus production. Sch527123 bound with high affinity to the CXCR2 receptors of mouse (Kd = 0.20 nM), rat (Kd = 0.20 nM), and cynomolgus monkey (Kd = 0.08 nM) and was a potent antagonist of CXCR2-mediated chemotaxis (IC50 ∼3–6 nM). In contrast, Sch527123 bound to cynomolgus CXCR1 with lesser affinity (Kd = 41 nM) and weakly inhibited cynomolgus CXCR1-mediated chemotaxis (IC50 ∼1000 nM). Oral treatment with Sch527123 blocked pulmonary neutrophilia (ED50 = 1.2 mg/kg) and goblet cell hyperplasia (32–38% inhibition at 1–3 mg/kg) in mice following the intranasal lipopolysaccharide (LPS) administration. In rats, Sch527123 suppressed the pulmonary neutrophilia (ED50 = 1.8 mg/kg) and increase in bronchoalveolar lavage (BAL) mucin content (ED50 =<0.1 mg/kg) induced by intratracheal (i.t.) LPS. Sch527123 also suppressed the pulmonary neutrophilia (ED50 = 1.3 mg/kg), goblet cell hyperplasia (ED50 = 0.7 mg/kg), and increase in BAL mucin content (ED50 = <1 mg/kg) in rats after i.t. administration of vanadium pentoxide. In cynomolgus monkeys, Sch527123 reduced the pulmonary neutrophilia induced by repeat bronchoscopy and lavage (ED50 = 0.3 mg/kg). Therefore, Sch527123 may offer benefit for the treatment of inflammatory lung disorders in which pulmonary neutrophilia and mucus hypersecretion are important components of the underlying disease pathology.
Genome Biology | 2002
Jun Zou; Simon Young; Feng Zhu; Ferdous Gheyas; Susan Skeans; Yuntao Wan; Luquan Wang; Wei Ding; M. Motasim Billah; Terri McClanahan; Robert L. Coffman; Robert W. Egan; Shelby P. Umland
BackgroundInhalation of Ascaris suum antigen by allergic monkeys causes an immediate bronchoconstriction and delayed allergic reaction, including a pulmonary inflammatory infiltrate. To identify genes involved in this process, the gene-expression pattern of allergic monkey lungs was profiled by microarrays. Monkeys were challenged by inhalation of A. suum antigen or given interleukin-4 (IL-4) treatment; lung tissue was collected at 4, 18 or 24 h after antigen challenge or 24 h after IL-4. Each challenged monkey lung was compared to a pool of normal, unchallenged monkey lungs.ResultsOf the approximately 40,000 cDNAs represented on the microarray, expression levels of 169 changed by more than 2.5-fold in at least one of the pairwise probe comparisons; these cDNAs encoded 149 genes, of which two thirds are known genes. The largest number of regulated genes was observed 4 h after challenge. Confirmation of differential expression in the original tissue was obtained for 95% of a set of these genes using real-time PCR. Cluster analysis revealed at least five groups of genes with unique expression patterns. One cluster contained genes for several chemokine mediators including eotaxin, PARC, MCP-1 and MCP-3. Genes involved in tissue remodeling and antioxidant responses were also identified as regulated by antigen and IL-4 or by antigen only.ConclusionThis study provides a large-scale profile of gene expression in the primate lung following allergen or IL-4 challenge. It shows that microarrays, with real-time PCR, are a powerful tool for identifying and validating differentially expressed genes in a disease model.
Biochemical and Biophysical Research Communications | 1988
Jin-Keon Pai; Marvin I. Siegel; Robert W. Egan; M. Motasim Billah
Activation of phospholipase D (PLD) has been investigated in dimethylsulfoxide differentiated HL-60 granulocytes labeled in endogenous 1-0-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) by incubation with [3H]alkyl-lysoPC. Stimulation of these labeled cells with the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), induces rapid generation of [3H]phosphatidic acid (PA) and slower formation of [3H]diglyceride, suggesting hydrolysis of alkyl-PC by PLD. A unique feature of PLD is its ability to transfer the phosphatidyl moiety of phospholipids to alcohols (transphosphatidylation). This characteristic has been exploited to identify PLD activity. For example, when ethanol is present during stimulation of the HL-60 cells, [3H]phosphatidylethanol (PEt) is formed with a concomitant decrease in [3H]PA. Cells incubated with [32P]orthophosphate to label the terminal phosphate of ATP do not incorporate 32P into PEt, consistent with the [3H]PEt not being synthesized from [3H]diglyceride. In contrast, [3H]PA arises from both PLD and diglyceride kinase activities. Furthermore, PEt synthesis closely parallels PA formation and both are inhibited by an fMLP receptor antagonist, suggesting that both PA and PEt are derived from agonist-stimulated PLD action. These observations are consistent with phospholipase D-catalyzed breakdown of alkyl-PC in fMLP- stimulated granulocytes.
European Journal of Pharmacology | 2002
John C. Anthes; Helen Gilchrest; Christian Richard; Stephen Eckel; Dave Hesk; Robert E. West; Shirley M. Williams; Scott Greenfeder; M. Motasim Billah; William Kreutner; Robert W. Egan
We have characterized desloratadine (5H-benzo[5,6]cyclohepta[1,2-b]pyridine, 8-chloro-6,11-dihydro-11-(4-piperidinylidene), CAS 100643-71-8) as a potent antagonist of the human histamine H(1) receptor. [3H]Desloratadine bound to membranes expressing the recombinant human histamine H(1) receptor in Chinese hamster ovary cells (CHO-H(1)) in a specific and saturable manner with a K(d) of 1.1+/-0.2 nM, a B(max) of 7.9+/-2.0 pmol/mg protein, and an association rate constant of 0.011 nM(-1) x min(-1). The K(d) calculated from the kinetic measurements was 1.5 nM. Dissociation of [3H]desloratadine from the human histamine H(1) receptor was slow, with only 37% of the binding reversed at 6 h in the presence of 5 microM unlabeled desloratadine. Seventeen histamine H(1)-receptor antagonists were evaluated in competition-binding studies. Desloratadine had a K(i) of 0.9+/-0.1 nM in these competition studies. In CHO-H(1) cells, histamine stimulation resulted in a concentration-dependent increase in [Ca(2+)](i) with an EC(50) of 170+/-30 nM. After a 90-min preincubation with desloratadine, the histamine-stimulated increase in [Ca(2+)](i) was shifted to the right, with a depression of the maximal response at higher concentrations of antagonist. The apparent K(b) value was 0.2+/-0.14 nM with a slope of 1.6+/-0.1. The slow dissociation from the receptor and noncompetitive antagonism suggests that desloratadine may be a pseudoirreversible antagonist of the human histamine H(1) receptor. The mechanism of desloratadine antagonism of the human histamine H(1) receptor may help to explain the high potency and 24-h duration of action observed in clinical studies.
Journal of Pharmacology and Experimental Therapeutics | 2007
Waldemar Gonsiorek; Xuedong Fan; David Hesk; James Fossetta; Hongchen Qiu; James Jakway; M. Motasim Billah; Michael P. Dwyer; Jianhua Chao; Gregory Deno; Art Taveras; Daniel Lundell; R. William Hipkin
In neutrophils, growth-related protein-α (CXCL1) and interleukin-8 (CXCL8), are potent chemoattractants (Cytokine 14:27–36, 2001; Biochemistry 42:2874–2886, 2003) and can stimulate myeloperoxidase release via activation of the G protein-coupled receptors CXCR1 and CXCR2. The role of CXCR1 and CXCR2 in the pathogenesis of inflammatory responses has encouraged the development of small molecule antagonists for these receptors. The data presented herein describe the pharmacology of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5-methyl-furan-2-yl)-propyl]amino]-3,4-dioxo-cyclobut-1-enylamino}-benzamide (Sch527123), a novel antagonist of both CXCR1 and CXCR2. Sch527123 inhibited chemokine binding to (and activation of) these receptors in an insurmountable manner and, as such, is categorized as an allosteric antagonist. Sch527123 inhibited neutrophil chemotaxis and myeloperoxidase release in response to CXCL1 and CXCL8 but had no effect on the response of these cells to C5a or formyl-methionyl-leucyl-phenylalanine. The pharmacological specificity of Sch527123 was confirmed by testing in a diversity profile against a panel of enzymes, channels, and receptors. To measure compound affinity, we characterized [3H]Sch527123 in both equilibrium and nonequilibrium binding analyses. Sch527123 binding to CXCR1 and CXCR2 was both saturable and reversible. Although Sch527123 bound to CXCR1 with good affinity (Kd = 3.9 ± 0.3 nM), the compound is CXCR2-selective (Kd = 0.049 ± 0.004 nM). Taken together, our data show that Sch527123 represents a novel, potent, and specific CXCR2 antagonist with potential therapeutic utility in a variety of inflammatory conditions.
Gene | 2003
Peng Wang; Ping Wu; Robert W. Egan; M. Motasim Billah
Previously, four splice variants of human cGMP-specific phosphodiesterase (PDE) 9A (PDEs 9A1, 9A2, 9A3 and 9A4) have been identified. In this study, we have cloned a cDNA representing a new human PDE9A variant (PDE9A5). PDE9A5 encodes a protein of 492 amino acids, smaller than PDEs 9A1 and 9A2 but larger than PDEs 9A3 and 9A4. The exon structure of PDE9A5 is different from those of PDEs 9A1, 9A2, 9A3 and 9A4 in that, of the 20 exons of PDE9A gene, it lacks exons 2 and 5. PDE9A5 has been characterized in comparison with PDE9A1, the longest PDE9A variant. PDEs 9A5 and 9A1 have similar enzymatic properties. They both have a high affinity for cGMP with similar Km values (0.39 and 0.25 microM, respectively), although they have slightly different Vmax values (2.55 and 0.96 micromol/min/mg, respectively). They exhibit very similar divalent metal ion dependency and inhibitor sensitivity. Real-time quantitative PCR analysis shows that PDEs 9A5 and 9A1 exhibit differential tissue distribution. They are highly expressed in immune tissues (spleen, lymph node and thymus) and are more abundant in T cells than in B cells, neutrophils and monocytes. When transiently expressed in HEK293 cells, PDEs 9A5 and 9A1 proteins exhibit differential subcellular localization. PDE9A5 localizes exclusively in the cytoplasm, whereas PDE9A1 localizes in the nucleus only. The nuclear localization of PDE9A1 is dependent on a unique pat7 motif. By Western blot analysis, native PDE9A1 is detectable in the nucleus but not in the cytoplasm of T cells. Thus, to our knowledge, PDE9A1 is the only PDE isoform found to localize exclusively in the nucleus. We speculate that the physiological role of the PDE9A diversity may be imparting cGMP-metabolizing ability to specific cellular compartments in appropriate tissues.
Biochemical and Biophysical Research Communications | 2003
Charles G. Garlisi; Jun Zou; Kristine Devito; Fang Tian; Feng X. Zhu; Jianjun Liu; Himanshu Shah; Yuntao Wan; M. Motasim Billah; Robert W. Egan; Shelby P. Umland
ADAM33 (a disintegrin and metalloprotease) was recently found to be a novel asthma susceptibility gene. Domain-specific antibodies were used to study its expression and processing. When the pro-domain and catalytic domain were expressed by a stable-transfected cell line, the pro-domain was removed by cleavage within a putative furin cleavage site. The catalytic domain was active in an alpha(2)-macroglobulin complex formation assay and mutation of the catalytic site glutamic acid (E346A) eliminated activity. In transient transfections using the full-length protein, a pro-form and mature form were detectable and alternate glycosylation was demonstrated at sites within the catalytic domain. ADAM33 was detected on the cell surface, with the majority of protein detected intracellularly. The E346A mutation had no significant effect on protein processing. Endogenous ADAM33 was detected in bronchus tissue, bronchial smooth muscle cells, and MRC-5 fibroblasts, consistent with a role in the pathophysiology of asthma.
Biochemical and Biophysical Research Communications | 1989
John C. Anthes; Stephen Eckel; Marvin I. Siegel; Robert W. Egan; M. Motasim Billah
Occupancy of chemotactic peptide receptors leads to rapid initiation of phospholipase D (PLD) activity in intact dimethylsulfoxide-differentiated HL-60 granulocytes (Pai, J.-K, Siegel, M.I., Egan, R.W., and Billah, M.M. (1988) J. Biol. Chem. 263, 12472). To gain further insight into the activation mechanisms, PLD has been studied in cell lysates from HL-60 granulocytes, using 1-0-alkyl-2-oleoyl-[32P]phosphatidylcholine (alkyl-[32P]PC), 1-0-[3H]alkyl-2-oleoyl-phosphatidylcholine [( 3H]alkyl-PC) and [14C]arachidonyl-phospholipids as substrates. In the presence of Ca2+ and GTP gamma S, post-nuclear homogenates degrade alkyl-[32P]PC to produce 1-0-alkyl-[32P]phosphatidic acid (alkyl-[32P]-PA), and in the presence of ethanol, also 1-0-alkyl-[32P]phosphatidylethanol (alkyl-[32P]PEt). By comparing the 3H/32P ratios of PA and PEt to that of PC, it is concluded that PA and PEt are formed exclusively by a PLD that catalyzes both hydrolysis and transphosphatidylation between PC and ethanol. Furthermore, PC containing either ester- or ether-linkage at the sn-1 position is degraded in preference to phosphatidylethanolamine and phosphatidylinositol by PLD in HL-60 cell homogenates. It is concluded that HL-60 granulocytes contain a PC-specific PLD that requires both Ca2+ and GTP for activation.