Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. N. Mazziotta is active.

Publication


Featured researches published by M. N. Mazziotta.


Astroparticle Physics | 2009

On possible interpretations of the high energy electron–positron spectrum measured by the Fermi Large Area Telescope

D. Grasso; Stefano Profumo; A. W. Strong; L. Baldini; R. Bellazzini; Elliott D. Bloom; J. Bregeon; G. Di Bernardo; Daniele Gaggero; N. Giglietto; T. Kamae; L. Latronico; F. Longo; M. N. Mazziotta; A. A. Moiseev; A. Morselli; J. F. Ormes; M. Pesce-Rollins; M. Pohl; M. Razzano; C. Sgrò; G. Spandre; T. E. Stephens

The Fermi-LAT experiment recently reported high precision measurements of the spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. Here we discuss several interpretations of the Fermi results based either on a single large scale Galactic CRE component or by invoking additional electron–positron primary sources, e.g. nearby pulsars or particle dark matter annihilation. We show that while the reported Fermi-LAT data alone can be interpreted in terms of a single component scenario, when combined with other complementary experimental results, specifically the CRE spectrum measured by H.E.S.S. and especially the positron fraction reported by PAMELA between 1 and 100 GeV, that class of models fails to provide a consistent interpretation. Rather, we find that several combinations of parameters, involving both the pulsar and dark matter scenarios, allow a consistent description of those results. We also briefly discuss the possibility of discriminating between the pulsar and dark matter interpretations by looking for a possible anisotropy in the CRE flux.


Astronomy and Astrophysics | 2012

Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars

P. Giommi; G. Polenta; A. Lähteenmäki; D. J. Thompson; Milvia Capalbi; S. Cutini; D. Gasparrini; J. González-Nuevo; J. León-Tavares; M. López-Caniego; M. N. Mazziotta; C. Monte; Matteo Perri; S. Rainò; G. Tosti; A. Tramacere; Francesco Verrecchia; Hugh D. Aller; M. F. Aller; E. Angelakis; D. Bastieri; A. Berdyugin; A. Bonaldi; L. Bonavera; C. Burigana; D. N. Burrows; S. Buson; E. Cavazzuti; Guido Chincarini; S. Colafrancesco

We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and -ray bands, and we compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi Large Area Telescope (LAT), whereas 30 to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the -ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, withh i 0 up to about 70 GHz, above which it steepens toh i 0:65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency ( S ) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples withh S i = 10 13:1 0:1 Hz, while the mean inverse-Compton peak frequency,h IC i, ranges from 10 21 to 10 22 Hz. The distributions of S and of IC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with -ray selected blazars peaking at 7 or more, and radio-selected blazars at values close to 1, thus implying that the common assumption that the blazar power budget is largely dominated by high-energy emission is a selection e ect. A comparison of our multi-frequency data with theoretical predictions shows that simple homogeneous SSC models cannot explain the simultaneous SEDs of most of the -ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and S predicted by the blazar sequence.


The Astrophysical Journal | 2012

Fermi large area telescope detection of the young supernova remnant tycho

F. Giordano; M. Naumann-Godo; J. Ballet; K. Bechtol; S. Funk; J. Lande; M. N. Mazziotta; S. Rainò; T. Tanaka; O. Tibolla; Y. Uchiyama

After almost three years of data taking in sky-survey mode, the Fermi Large Area Telescope has detected γ-ray emission toward Tychos supernova remnant (SNR). The Tycho SNR is among the youngest remnants in the Galaxy, originating from a Type Ia Supernova in AD 1572. The γ-ray integral flux from 400 MeV up to 100 GeV has been measured to be (3.5 ± 1.1stat ± 0.7syst)× 10–9 cm–2 s–1 with a photon index of 2.3 ± 0.2stat ± 0.1syst. A simple model consistent with TeV, X-ray, and radio data is sufficient to explain the observed emission as originating from π0 decays as a result of cosmic-ray acceleration and interaction with the ambient medium.


The Astrophysical Journal | 2009

Prospects for GRB Science with the Fermi Large Area Telescope

David L. Band; Magnus Axelsson; L. Baldini; G. Barbiellini; Matthew G. Baring; D. Bastieri; M. Battelino; R. Bellazzini; E. Bissaldi; G. Bogaert; Jerry T. Bonnell; J. Chiang; J. Cohen-Tanugi; V. Connaughton; S. Cutini; F. de Palma; B. L. Dingus; E. Do Couto E Silva; G. Fishman; A. Galli; N. Gehrels; N. Giglietto; Jonathan Granot; S. Guiriec; R. Hughes; T. Kamae; Nu. Komin; F. Kuehn; M. Kuss; F. Longo

The Large Area Telescope (LAT) instrument on the Fermi mission will reveal the rich spectral and temporal gamma-ray burst (GRB) phenomena in the >100 MeV band. The synergy with Fermis Gamma-ray Burst Monitor detectors will link these observations to those in the well explored 10-1000 keV range; the addition of the >100 MeV band observations will resolve theoretical uncertainties about burst emission in both the prompt and afterglow phases. Trigger algorithms will be applied to the LAT data both onboard the spacecraft and on the ground. The sensitivity of these triggers will differ because of the available computing resources onboard and on the ground. Here we present the LATs burst detection methodologies and the instruments GRB capabilities.


Experimental Astronomy | 2017

The e-ASTROGAM mission

A. De Angelis; V. Tatischeff; U. Oberlack; I. Grenier; L. Hanlon; Roland Walter; A. Argan; P. von Ballmoos; A. Bulgarelli; I. Donnarumma; Margarida Hernanz; Irfan Kuvvetli; M. Pearce; Andrzej A. Zdziarski; A. Aboudan; M. Ajello; G. Ambrosi; D. Bernard; E. Bernardini; V. Bonvicini; A. Brogna; M. Branchesi; Carl Budtz-Jørgensen; A. Bykov; R. Campana; M. Cardillo; Paolo S. Coppi; D. de Martino; R. Diehl; M. Doro

Abstracte-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.


Astroparticle Physics | 2012

A model-independent analysis of the Fermi Large Area Telescope gamma-ray data from the Milky Way dwarf galaxies and halo to constrain dark matter scenarios

M. N. Mazziotta; F. Loparco; F. de Palma; N. Giglietto

We implemented a novel technique to perform the collective spectral analysis of sets of multiple gamma-ray point sources using the data collected by the Large Area Telescope onboard the Fermi satellite. The energy spectra of the sources are reconstructed starting from the photon counts and without assuming any spectral model for both the sources and the background. In case of faint sources, upper limits on their fluxes are evaluated with a Bayesian approach. This analysis technique is very useful when several sources with similar spectral features are studied, such as sources of gamma rays from annihilation of dark matter particles. We present the results obtained by applying this analysis to a sample of dwarf spheroidal galaxies and to the Milky Way dark matter halo. The analysis of dwarf spheroidal galaxies yields upper limits on the product of the dark matter pair annihilation cross section and the relative velocity of annihilating particles that are well below those predicted by the canonical thermal relic scenario in a mass range from a few GeV to a few tens of GeV for some annihilation channels.


Physical Review D | 2017

Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope

S. Abdollahi; M. Ackermann; M. Ajello; W. B. Atwood; L. Baldini; G. Barbiellini; D. Bastieri; R. Bellazzini; E. D. Bloom; R. Bonino; T. Brandt; J. Bregeon; P. Bruel; R. Buehler; R. A. Cameron; R. Caputo; M. Caragiulo; Daniel Castro; E. Cavazzuti; C. Cecchi; A. Chekhtman; S. Ciprini; J. Cohen-Tanugi; F. Costanza; A. Cuoco; S. Cutini; F. D'Ammando; F. de Palma; R. Desiante; S. W. Digel

We present a measurement of the cosmic-ray electron+positron spectrum between 7 GeV and 2 TeV performed with almost seven years of data collected with the Fermi Large Area Telescope. We find that the spectrum is well fit by a broken power law with a break energy at about 50 GeV. Above 50 GeV, the spectrum is well described by a single power law with a spectral index of 3.07 ± 0.02 (stat+syst) ± 0.04 (energy measurement). An exponential cutoff lower than 1.8 TeV is excluded at 95% CL. PACS numbers: 98.70.Sa, 96.50.sb, 95.85.Ry, 95.55.Vj


arXiv: Instrumentation and Methods for Astrophysics | 2016

PANGU: A High Resolution Gamma-Ray Space Telescope

X. Wuf; Jin Chang; R. Walter; Meng Su; G. Ambrosi; M. Böttcher; M. Chernyakova; Y. Fan; C. Farnier; F. Gargano; Wojtek Hajdas; M. N. Mazziotta; A. Morselli; M. Pearce; M. Pohl; P. von Ballmoos; Andrzej A. Zdziarski

PANGU (the PAir-productioN Gamma-ray Unit) is a small astrophysics mission with wide field of view optimized for spectro-imaging, timing and polarisation studies. It will map the gamma-ray sky from ...


Proceedings of SPIE | 2014

The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station

Sn Zhang; O. Adriani; Sebastiano Albergo; G. Ambrosi; Q. An; Tianwei Bao; R. Battiston; Xiaojun Bi; Z. Cao; Junying Chai; Jin Chang; G. M. Chen; Y. Chen; Xh Cui; Z. Dai; Raffaello D'Alessandro; Yongwei Dong; Yizhong Fan; C. Q. Feng; H. Feng; Zy Feng; Xh Gao; F. Gargano; N. Giglietto; Qb Gou; Yq Guo; Bl Hu; Hb Hu; Hh He; G. S. Huang

The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard Chinas Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.


The Astrophysical Journal | 2017

Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares

M. Ackermann; A. Allafort; L. Baldini; G. Barbiellini; D. Bastieri; R. Bellazzini; E. Bissaldi; R. Bonino; E. Bottacini; J. Bregeon; P. Bruel; R. Buehler; R. A. Cameron; M. Caragiulo; P. A. Caraveo; E. Cavazzuti; C. Cecchi; E. Charles; S. Ciprini; F. Costanza; S. Cutini; F. D'Ammando; F. de Palma; R. Desiante; S. W. Digel; N. Di Lalla; M. Di Mauro; L. Di Venere; P. S. Drell; C. Favuzzi

We report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions originating behind both the eastern and western limbs, as determined by STEREO. All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR) and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwave spectra. We also provide a comparison of the BTL flares detected by Fermi-LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.

Collaboration


Dive into the M. N. Mazziotta's collaboration.

Top Co-Authors

Avatar

F. Gargano

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

F. Loparco

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

P. Fusco

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

C. Favuzzi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

L. Baldini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

F. Giordano

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

M. Brigida

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

N. Giglietto

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Rainò

Instituto Politécnico Nacional

View shared research outputs
Researchain Logo
Decentralizing Knowledge