Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Nonino is active.

Publication


Featured researches published by M. Nonino.


The Astrophysical Journal | 2004

The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging

Mauro Giavalisco; Henry C. Ferguson; Anton M. Koekemoer; Mark Dickinson; D. M. Alexander; F. E. Bauer; Jacqueline Bergeron; C. Biagetti; W. N. Brandt; Stefano Casertano; Catherine J. Cesarsky; Eleni T. Chatzichristou; Christopher J. Conselice; S. Cristiani; L. N. da Costa; Tomas Dahlen; Duilia Fernandes de Mello; Peter R. M. Eisenhardt; T. Erben; S. M. Fall; C. D. Fassnacht; Robert A. E. Fosbury; Andrew S. Fruchter; Jonathan P. Gardner; Norman A. Grogin; Richard N. Hook; A. E. Hornschemeier; Rafal Idzi; S. Jogee; Claudia Kretchmer

This special issue of the Astrophysical Journal Letters is dedicated to presenting initial results from the Great Observatories Origins Deep Survey (GOODS) that are primarily, but not exclusively, based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS). The survey covers roughly 320 arcmin2 in the ACS F435W, F606W, F814W, and F850LP bands, divided into two well-studied fields. Existing deep observations from the Chandra X-Ray Observatory and ground-based facilities are supplemented with new, deep imaging in the optical and near-infrared from the European Southern Observatory and from the Kitt Peak National Observatory. Deep observations with the Space Infrared Telescope Facility are scheduled. Reduced data from all facilities are being released worldwide within 3-6 months of acquisition. Together, this data set provides two deep reference fields for studies of distant normal and active galaxies, supernovae, and faint stars in our own Galaxy. This Letter serves to outline the survey strategy and describe the specific data that have been used in the accompanying letters, summarizing the reduction procedures and sensitivity limits.


Astrophysical Journal Supplement Series | 2004

The Chandra Deep Field-South: Optical Spectroscopy. I.

Gyula Pal Szokoly; Jacqueline Bergeron; G. Hasinger; I. Lehmann; Lisa J. Kewley; V. Mainieri; M. Nonino; P. Rosati; Riccardo Giacconi; R. Gilli; Roberto Gilmozzi; Colin Norman; M. Romaniello; Ethan J. Schreier; P. Tozzi; Jing Wang; W. Zheng; A. Zirm

We present the results of our spectroscopic follow-up program of the X-ray sources detected in the 942 ks exposure of the Chandra Deep Field-South (CDFS). A total of 288 possible counterparts were observed at the VLT with the FORS1/FORS2 spectrographs for 251 of the 349 Chandra sources (including three additional faint X-ray sources). Spectra and R-band images are shown for all the observed sources and R - K colors are given for most of them. Spectroscopic redshifts were obtained for 168 X-ray sources, of which 137 have both reliable optical identification and redshift estimate (including 16 external identifications). The R 1044 ergs s-1] at z > 2 (13 sources with unambiguous spectroscopic identification); most X-ray type 1 QSOs are bright, R 24, whereas most X-ray type 2 QSOs have R 24, which may explain the difference with the CDFN results as few spectroscopic redshifts were obtained for R > 24 CDFN X-ray counterparts. There are X-ray type 1 QSOs down to z ~ 0.5, but a strong decrease at z 5) as X-ray counterparts, and their fraction strongly increases with decreasing optical flux, up to 25% for the R ? 24 sample. They cover the whole range of X-ray hardness ratios, comprise objects of various classes (in particular a high fraction of z 1 X-ray absorbed AGNs, but also elliptical and starburst galaxies) and more than half of them should be fairly bright X-ray sources [LX(0.5-10 keV) > 1042 ergs s-1]. Photometric redshifts will be necessary to derive the properties and evolution of the X-ray selected EROs.


The Astrophysical Journal | 2002

The Chandra Deep Field-South: The 1 Million Second Exposure*

P. Rosati; P. Tozzi; Riccardo Giacconi; R. Gilli; Guenther Hasinger; L. Kewley; V. Mainieri; M. Nonino; Colin Norman; Gyula Pal Szokoly; Jing Wang; A. Zirm; Jacqueline Bergeron; S. Borgani; Roberto Gilmozzi; Norman A. Grogin; Anton M. Koekemoer; Ethan J. Schreier; W. Zheng

We present the main results from our 940 ks observation of the Chandra Deep Field-South using the source catalog described in an accompanying paper by Giacconi et al. We extend the measurement of source number counts to 5.5 × 10-17 ergs cm-2 s-1 in the soft 0.5-2 keV band and 4.5 × 10-16 ergs cm-2 s-1 in the hard 2-10 keV band. The hard-band log N-log S shows a significant flattening (slope 0.6) below ≈10-14 ergs cm-2 s-1, leaving at most 10%-15% of the X-ray background to be resolved, the main uncertainty lying in the measurement of the total flux of the X-ray background (XRB). On the other hand, the analysis in the very hard 5-10 keV band reveals a relatively steep log N-log S (slope 1.3) down to 10-15 ergs cm-2 s-1. Together with the evidence of a progressive flattening of the average X-ray spectrum near the flux limit, this indicates that there is still a nonnegligible population of faint hard sources to be discovered at energies not well probed by Chandra, which possibly contributes to the 30 keV bump in the spectrum of the XRB. We use optical redshifts and identifications, obtained with the Very Large Telescope, for one-quarter of the sample to characterize the combined optical and X-ray properties of the Chandra Deep Field-South sample. Different source types are well separated in a parameter space that includes X-ray luminosity, hardness ratio, and R-K color. Type II objects, while redder on average than the field population, have colors that are consistent with being hosted by a range of galaxy types. Type II active galactic nuclei are mostly found at z 1, in contrast with predictions based on active galactic nucleus population synthesis models, thus suggesting a revision of their evolutionary parameters.


Astronomy and Astrophysics | 2006

The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field ,

A. Grazian; A. Fontana; C. De Santis; M. Nonino; S. Salimbeni; E. Giallongo; S. Cristiani; S. Gallozzi; E. Vanzella

Aims. We present a high quality multiwavelength (from 0.3 to 8.0 µm) catalog of the large and deep area in the GOODS Southern Field covered by the deep near-IR observations obtained with the ESO VLT. Methods. The catalog is entirely based on public data: in our analysis, we have included the F435W, F606W, F775W and F850LP ACS images, the JHKs VLT data, the Spitzer data provided by IRAC instrument (3.6, 4.5, 5.8 and 8.0 µm), and publicly available U-band data from the 2.2ESO and VLT-VIMOS. We describe in detail the procedures adopted to obtain this multiwavelength catalog. In particular, we developed a specific software for the accurate “PSF-matching” of space and ground-based images of different resolution and depth (ConvPhot), of which we analyse performances and limitations. We have included both z-selected, as well as Ks-selected objects, yielding a unique, self-consistent catalog. The largest fraction of the sample is 90% complete at z � 26 or Ks � 23.8 (AB scale). Finally, we cross-correlated our data with all the spectroscopic catalogs available to date, assigning a spectroscopic redshift to more than 1000 sources. Results. The final catalog is made up of 14 847 objects, at least 72 of which are known stars, 68 are AGNs, and 928 galaxies with spectroscopic redshift (668 galaxies with reliable redshift determination). We applied our photometric redshift code to this data set, and the comparison with the spectroscopic sample shows that the quality of the resulting photometric redshifts is excellent, with an average scatter of only 0.06. The full catalog, which we named GOODS-MUSIC (MUltiwavelength Southern Infrared Catalog), including the spectroscopic information, is made publicly available, together with the software specifically designed to this end.


Astronomy and Astrophysics | 2009

Star formation and mass assembly in high redshift galaxies

P. Santini; A. Fontana; A. Grazian; Sara Salimbeni; F. Fiore; Fabio Fontanot; K. Boutsia; M. Castellano; S. Cristiani; C. De Santis; S. Gallozzi; E. Giallongo; N. Menci; M. Nonino; D. Paris; L. Pentericci; E. Vanzella

Aims. The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z 0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to � 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass;


Nature | 2012

A magnified young galaxy from about 500 million years after the Big Bang

Wei Zheng; Marc Postman; Adi Zitrin; John Moustakas; Xinwen Shu; S. Jouvel; Ole Host; A. Molino; L. Bradley; Dan Coe; Leonidas A. Moustakas; Mauricio Carrasco; Holland C. Ford; N. Benítez; Tod R. Lauer; S. Seitz; R. J. Bouwens; Anton M. Koekemoer; Elinor Medezinski; Matthias Bartelmann; Tom Broadhurst; Megan Donahue; C. Grillo; Leopoldo Infante; Saurabh W. Jha; Daniel D. Kelson; Ofer Lahav; Doron Lemze; P. Melchior; Massimo Meneghetti

Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6–11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.Johns Hopkins University, 3701 San Martin Drive, Baltimore , MD 21218, U.S.A. Space Telescope Science Institute Universität Heidelberg University of California, San Diego University of Science and Technology of China University College London Institute de Ciencies de l’Espai Instituto de Astrofı́sica de Andalucı́a Jet Propulsion Laboratory, California Institute of Techno logy Pontificia Universidad Católica de Chile National Optical Astronomical Observatory Universitas Sternwarte, München Leiden Observatory University of Basque Country


Astronomische Nachrichten | 2005

GaBoDS: The Garching-Bonn Deep Survey. IV. Methods for the image reduction of multi-chip cameras demonstrated on data from the ESO Wide-Field Imager

Thomas Erben; Mischa Schirmer; J. P. Dietrich; O. Cordes; L. Haberzettl; Marco Hetterscheidt; Hendrik Hildebrandt; O. Schmithuesen; Peter Schneider; Patrick Simon; E. Deul; R. N. Hook; Nick Kaiser; M. Radovich; C. Benoist; M. Nonino; L. F. Olsen; I. Prandoni; R. Wichmann; S. Zaggia; Dominik J. Bomans; R.-J. Dettmar; J. M. Miralles

We present our image processing system for the reduction of optical imaging data from multi-chip cameras. In the framework of the Garching Bonn Deep Survey (GaBoDS; Schirmer et al. 2003) consisting of about 20 square degrees of high-quality data from WFI@MPG/ESO 2.2m, our group developed an imaging pipeline for the homogeneous and efficient processing of thislarge data set. Having weak gravitational lensing as the main science driver, our algorithms are optimised to produce deep co-added mosaics from individual exposures obtained from empty field observations. However, the modular design of our pipeline allows an easy adaption to different scientific applications. Our system has already been ported to a large variety of optical instruments and its products have been used in various scientific contexts. In this paper we give a thorough description of the algorithms used and a careful evaluation of the accuracies reached. This concerns the removal of the instrumental signature, the astrometric alignment, photometric calibration and the characterisation of final co-added mosaics. In addition we give a more general overview on the image reduction process and comment on observing strategies where they have significant influence on the data quality.


Astronomy and Astrophysics | 2005

The great observatories origins deep survey - VLT/VIMOS spectroscopy in the GOODS-south field

P. Popesso; Mark Dickinson; M. Nonino; E. Vanzella; E. Daddi; Robert A. E. Fosbury; Harald Kuntschner; V. Mainieri; S. Cristiani; Catherine J. Cesarsky; Mauro Giavalisco; A. Renzini

We present the full data set of the VIMOS spectroscopic campaign of the ESO/GOODS program in the CDFS, which complements the FORS2 ESO/GOODS spectroscopic campaign. The GOODS/VIMOS spectroscopic campaign is structured in two separate surveys using two different VIMOS grisms. The VIMOS Low Resolution Blue (LR-Blue) and Medium Resolution (MR) orange grisms have been used to cover different redshift ranges. The LR-Blue campaign is aimed at observing galaxies mainly at 1.8 3.5. The full GOODS/VIMOS spectroscopic campaign consists of 20 VIMOS masks. This release adds 8 new masks to the previous release (12 masks, Popesso et al. 2009). In total we obtained 5052 spectra, 3634 from the 10 LR-Blue masks and 1418 from the 10 MR masks. A significant fraction of the extracted spectra comes from serendipitously observed sources: ~21% in the LR-Blue and ~16% in the MR masks. We obtained 2242 redshifts in the LR-Blue campaign and 976 in the MR campaign for a total success rate of 62% and 69% respectively, which increases to 66% and 73% if only primary targets are considered. The typical redshift uncertainty is estimated to be ~0.0012 (~255 km/s) for the LR-Blue grism and ~0.00040 (~120 km/s) for the MR grism. By complementing our VIMOS spectroscopic catalog with all existing spectroscopic redshifts publicly available in the CDFS, we compiled a redshift master catalog with 7332 entries, which we used to investigate large scale structures out to z~3.7. We produced stacked spectra of LBGs in a few bins of equivalent width (EW) of the Ly-alpha and found evidence for a lack of bright LBGs with high EW of the Ly-alpha. Finally, we obtained new redshifts for 12 X-ray sources of the CDFS and extended-CDFS.


The Astrophysical Journal | 2002

A Classic Type 2 QSO

Colin Norman; Guenther Hasinger; Riccardo Giacconi; R. Gilli; Lisa J. Kewley; M. Nonino; P. Rosati; Gyula Pal Szokoly; P. Tozzi; Junxian Wang; Wei Zheng; A. Zirm; Jacqueline Bergeron; Roberto Gilmozzi; Norman A. Grogin; Anton M. Koekemoer; Ethan J. Schreier

In the Chandra Deep Field-South 1 Ms exposure, we have found, at redshift 3.700 ± 0.005, the most distant type 2 active galactic nucleus ever detected. It is the source with the hardest X-ray spectrum with redshift z > 3. The optical spectrum has no detected continuum emission to a 3 σ detection limit of ~3 × 10-19 ergs s-1 cm-2 A-1 and shows narrow lines of Lyα, C IV, N V, He II, O VI, [O III], and C III]. Their FWHM line widths have a range of ~700-2300 km s-1 with an average of approximately ~1500 km s-1. The emitting gas is metal-rich (Z 2.5-3 Z☉). In the X-ray spectrum of 130 counts in the 0.5-7 keV band, there is evidence for intrinsic absorption with NH 1024 cm-2. An iron Kα line with rest-frame energy and equivalent width of ~6.4 keV and ~1 keV, respectively, in agreement with the obscuration scenario, is detected at a 2 σ level. If confirmed by our forthcoming XMM-Newton observations, this would be the highest redshift detection of Fe Kα. Depending on the assumed cosmology and the X-ray transfer model, the 2-10 keV rest frame luminosity corrected for absorption is ~1045 ± 0.5 ergs cm-2 s-1, which makes our source a classic example of the long-sought type 2 QSO. From standard population synthesis models, these sources are expected to account for a relevant fraction of the black hole-powered QSO distribution at high redshift.


Astrophysical Journal Supplement Series | 2005

The Extended Chandra Deep Field-South Survey: Chandra Point-Source Catalogs

B. D. Lehmer; W. N. Brandt; D. M. Alexander; F. E. Bauer; Donald P. Schneider; P. Tozzi; Jacqueline Bergeron; Gordon Garmire; Riccardo Giacconi; R. Gilli; G. Hasinger; A. E. Hornschemeier; Anton M. Koekemoer; V. Mainieri; Takamitsu Miyaji; M. Nonino; P. Rosati; J. D. Silverman; Gyula Pal Szokoly; C. Vignali

We present Chandra point-source catalogs for the Extended Chandra Deep Field-South (E-CDF-S) survey. The E-CDF-S consists of four contiguous 250 ks Chandra observations covering an approximately square region of total solid angle ≈0.3 deg2, which flank the existing ≈1 Ms Chandra Deep Field-South (CDF-S). The survey reaches sensitivity limits of ≈1.1 × 10-16 and ≈6.7 × 10-16 ergs cm-2 s-1 for the 0.5-2.0 and 2-8 keV bands, respectively. We detect 762 distinct X-ray point sources within the E-CDF-S exposure; 589 of these sources are new (i.e., not previously detected in the ≈1 Ms CDF-S). This brings the total number of X-ray point sources detected in the E-CDF-S region to 915 (via the E-CDF-S and ≈1 Ms CDF-S observations). Source positions are determined using matched-filter and centroiding techniques; the median positional uncertainty is ≈035. The basic X-ray and optical properties of these sources indicate a variety of source types, although absorbed active galactic nuclei (AGNs) seem to dominate. In addition to our main Chandra catalog, we constructed a supplementary source catalog containing 33 lower significance X-ray point sources that have bright optical counterparts (R < 23). These sources generally have X-ray-to-optical flux ratios expected for normal and starburst galaxies, which lack a strong AGN component. We present basic number-count results for our main Chandra catalog and find good agreement with the ≈1 Ms CDF-S for sources with 0.5-2.0 and 2-8 keV fluxes greater than 3 × 10-16 and 1 × 10-15 ergs cm-2 s-1, respectively. Furthermore, three extended sources are detected in the 0.5-2.0 keV band, which are found to be likely associated with galaxy groups or poor clusters at z ≈ 0.1-0.7; these have typical rest-frame 0.5-2.0 keV luminosities of (1-5) × 1042 ergs s-1.

Collaboration


Dive into the M. Nonino's collaboration.

Top Co-Authors

Avatar

P. Rosati

University of Ferrara

View shared research outputs
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

C. Grillo

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge