M. Oliva-Leyva
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Oliva-Leyva.
Reports on Progress in Physics | 2017
Gerardo G. Naumis; Salvador Barraza-Lopez; M. Oliva-Leyva; Humberto Terrones
This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced. Thereafter, various theoretical approaches used to study the electronic properties of strained graphene are examined, discussing the advantages of each. These approaches provide a platform to describe exotic properties, such as a fractal spectrum related with quasicrystals, a mixed Dirac-Schrödinger behavior, emergent gravity, topological insulator states, in molecular graphene and other 2D discrete lattices. The physical consequences of strain on the optical properties are reviewed next, with a focus on the Raman spectrum. At the same time, recent advances to tune the optical conductivity of graphene by strain engineering are given, which open new paths in device applications. Finally, a brief review of strain effects in multilayered graphene and other promising 2D materials like silicene and materials based on other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-monolayers is presented, with a brief discussion of interplays among strain, thermal effects, and illumination in the latter material family.
Physical Review B | 2013
M. Oliva-Leyva; Gerardo G. Naumis
The behavior of electrons in strained graphene is usually described using effective pseudomagnetic fields in a Dirac equation. Here we consider the particular case of a spatially constant strain. Our results indicate that lattice corrections are easily understood using a strained reciprocal space, in which the whole energy dispersion is simply shifted and deformed. This leads to a directional dependent Fermi velocity without producing pseudomagnetic fields. The corrections due to atomic wavefunction overlap changes tend to compensate such effects. Also, the analytical expressions for the shift of the Dirac points as well as the corresponding Dirac equation are found. In view of the former results, we discuss the range of applicability of the usual approach of considering pseudomagnetic fields in a Dirac equation derived from the old Dirac points of the unstrained lattice. Such considerations are important if a comparison is desired with experiments or numerical simulations.
Physics Letters A | 2015
M. Oliva-Leyva; Gerardo G. Naumis
Abstract The relevance of the strain-induced Dirac point shift to obtain the appropriate anisotropic Fermi velocity of strained graphene is demonstrated. Then a critical revision of the available effective Dirac Hamiltonians is made by studying in detail the limiting case of a uniform strain. An effective Dirac Hamiltonian for nonuniform strain is thus reported, which takes into account all strain-induced effects: changes in the nearest-neighbor hopping parameters, the reciprocal lattice deformation and the true shift of the Dirac point. Pseudomagnetic fields are thus explained by means of position-dependent Dirac cones, whereas complex gauge fields appear as a consequence of a position-dependent Fermi velocity. Also, position-dependent Fermi velocity effects on the spinor wavefunction are considered for interesting cases of deformations such as flexural modes.
Journal of Physics: Condensed Matter | 2014
M. Oliva-Leyva; Gerardo G. Naumis
The density of states and the AC conductivity of graphene under uniform strain are calculated using a new Dirac Hamiltonian that takes into account the main three ingredients that change the electronic properties of strained graphene: the real displacement of the Fermi energy, the reciprocal lattice strain and the changes in the overlap of atomic orbitals. Our simple analytical expressions for the density of states and the AC conductivity generalize previous expressions for uniaxial strain. The results suggest a way to measure the Grüneisen parameter β that appears in any calculation of strained graphene, as well as the emergence of a sort of Hall effect due to shear strain.
Physical Review B | 2016
M. Oliva-Leyva; Gerardo G. Naumis
We derive the low-energy Hamiltonian for a honeycomb lattice with anisotropy in the hopping parameters. Taking the reported Dirac Hamiltonian for the anisotropic honeycomb lattice, we obtain its optical conductivity tensor and its transmittance for normal incidence of linearly polarized light. Also, we characterize its dichroic character due to the anisotropic optical absorption. As an application of our general findings, which reproduce the case of uniformly strained graphene, we study the optical properties of graphene under a nonmechanical distortion.
Journal of Physics: Condensed Matter | 2016
M. Oliva-Leyva; Gerardo G. Naumis
We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones. This leads to a collimation effect of electron conduction due to strain waves.
Annals of Physics | 2017
M. Oliva-Leyva; Chumin Wang
In the presence of an external magnetic field, the optical response of two-dimensional materials, whose charge carriers behave as massless Dirac fermions with arbitrary anisotropic Fermi velocity, is investigated. Using Kubo formalism, we obtain the magneto-optical conductivity tensor for these materials, which allows to address the magneto-optical response of anisotropic Dirac fermions from the well known magneto-optical conductivity of isotropic Dirac fermions. As an application, we analyse the combined effects of strain-induced anisotropy and magnetic field on the transmittance, as well as on the Faraday rotation, of linearly polarized light after passing strained graphene. The reported analytical expressions can be an useful tool to predict the absorption and the Faraday angle of strained graphene under magnetic field. Finally, our study is extended to anisotropic two-dimensional materials with Dirac fermions of arbitrary pseduospin.
Journal of Physics: Condensed Matter | 2014
M. Oliva-Leyva; Gerardo G. Naumis
Archive | 2014
M. Oliva-Leyva; Gerardo G. Naumis
Archive | 2016
Gerardo G. Naumis; Salvador Barraza-Lopez; M. Oliva-Leyva; Humberto Terrones