Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Paluch is active.

Publication


Featured researches published by M. Paluch.


Reports on Progress in Physics | 2005

Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure

C. M. Roland; S. Hensel-Bielowka; M. Paluch; R. Casalini

An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification. Recent advances have been made by using hydrostatic pressure as an experimental variable. These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers.


Journal of Physics D | 2005

Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics

A Molak; M. Paluch; S. Pawlus; J Klimontko; Z. Ujma; I. Gruszka

Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the x-ray diffraction analysis it was found that the newly obtained (Na0.75Bi0.25) (Mn0.25Nb0.75)O3 ceramics consist of two chemically different phases. The major perovskite one has an orthorhombic structure described by the Pbcm space group (No 57, in yxz setting). The minor phase shows an orthorhombic symmetry, all-face-centred lattice F, with the lattice parameters a = 10.797(4) A, b = 7.601(3) A and c = 7.691(3) A. The electric modulus M* formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the e*(ω) representation. In the ceramics studied, the relaxation times are thermally activated and the dipole process has a clearly non-Debye behaviour. The relaxation process described with the use of the activation energy of approximately 0.4 eV and the characteristic relaxation time, τ0 = 1 × 10−11 s, was found to be related to oxygen vacancies. The low frequency relaxation shows Debye behaviour with a slightly lower activation energy and a longer characteristic time.


Journal of Physical Chemistry B | 2009

Broadband Dielectric Relaxation Study at Ambient and Elevated Pressure of Molecular Dynamics of Pharmaceutical: Indomethacin

Z. Wojnarowska; Karolina Adrjanowicz; P. Wlodarczyk; E. Kaminska; K. Kaminski; K. Grzybowska; Roman Wrzalik; M. Paluch; K. L. Ngai

Broadband dielectric measurements on the pharmaceutical indomethacin (IMC) were performed at ambient and elevated pressure. Data on molecular dynamics collected at ambient pressure are in good agreement with that published in the literature. In the glassy state, there is a well-resolved secondary relaxation with Arrhenius activation energy E(a) = 38 kJ/mol. This commonly observed relaxation process (labeled gamma) is of intramolecular origin because it is pressure-insensitive. Closer analysis of the ambient pressure dielectric spectra obtained in the vicinity of the T(g) indicated the presence of one more secondary relaxation (beta), which is slower than that commonly observed. Application of the CM predictions enabled us to classify it as a true JG relaxation. Pressure measurements confirmed our supposition concerning the origins of the two secondary relaxations in IMC. Moreover, we have found that IMC under pressure does not crystallize, even at very high temperatures of T > or = 372 K. This finding was discussed in the framework of the two-order parameter model proposed by Tanaka (Konishi, T.; Tanaka, H. Phys. Rev B 2007, 76, 220201), as well as the JG relaxation proposal by Oguni (Hikima T.; Hanaya M.; Oguni M. J. Mol Struct. 1999, 479, 245). We also showed that the shape of the alpha-relaxation loss peak is the same when comparing dielectric spectra with the same tau(alpha) but obtained at ambient and elevated pressure. Additionally, we found out that the fragility of IMC decreases with increasing pressure. In addition, the pressure coefficient of the glass transition temperature, dT(g)/dP, was determined, and it is 255 K/GPa. Finally, we discuss the possibility of preparation of the amorphous state with higher density than by cooling of the liquid.


Journal of Physical Chemistry Letters | 2012

Many-Body Nature of Relaxation Processes in Glass-Forming Systems

S. Capaccioli; M. Paluch; Daniele Prevosto; Li-Min Wang; K. L. Ngai

Most glass-forming systems are composed of basic units interacting with each other with a nontrivial anharmonic potential. Naturally, relaxation and diffusion in glass formers is a many-body problem. Results from recent experimental studies are presented to show the effects of many-body relaxation and diffusion manifested on the dynamic properties of glass formers. Considering that the effects are general and critical, the problem of glass transition will not be solved until the many-body nature of the relaxation process has been incorporated fundamentally into any theory.


Journal of Physical Chemistry B | 2010

Molecular Dynamics and Physical Stability of Amorphous Anti-Inflammatory Drug: Celecoxib

K. Grzybowska; M. Paluch; Andrzej Grzybowski; Z. Wojnarowska; L. Hawelek; K. Kolodziejczyk; K. L. Ngai

By using dielectric spectroscopy we analyzed the relation between molecular mobility and tendency of the amorphous celecoxib to recrystallize. We found that celecoxib is kinetically a fragile glassformer, contrary to the conclusion reached by others from thermodynamic fragility. The possible correlation of the large tendency of celecoxib to crystallize with various molecular motions have been investigated. Our study shows that the structural relaxation seems to be responsible for devitrification of celecoxib if stored at room temperature ∼293 K. Notwithstanding, the crystallization can be considered to ultimately be affected by the β-process (JG-relaxation) because it is the precursor of the structural α-relaxation.


Journal of Chemical Physics | 2008

Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.

Michal Mierzwa; S. Pawlus; M. Paluch; E. Kaminska; K. L. Ngai

The primary alpha and the secondary Johari-Goldstein (JG) beta relaxations of supercooled glass-forming neat epoxy resin and 2-picoline in mixture with tristyrene are monitored by broadband dielectric relaxation spectroscopy at ambient pressure and elevated pressures. For different combinations of pressure and temperature that maintain the alpha-relaxation time constant, the frequency dispersion of the alpha relaxation is unchanged, as previously found in other glass-formers, but remarkably the JG beta-relaxation time remains constant. This is more clear evidence of a strong connection between the alpha- and JG beta-relaxation times, a fact that should be taken into account in the construction of a viable theory of glass transition.


Journal of Physical Chemistry B | 2010

Dielectric Relaxation and Crystallization Kinetics of Ibuprofen at Ambient and Elevated Pressure

Karolina Adrjanowicz; K. Kaminski; Z. Wojnarowska; Mateusz Dulski; L. Hawelek; S. Pawlus; M. Paluch; Wiesław Sawicki

Dielectric spectroscopy (DS) was used to investigate the relaxation dynamics of supercooled and glassy ibuprofen at various isobaric and isothermal conditions (pressure up to 1750 MPa). The ambient pressure data are in good agreement with that reported previously in the literature. Our high pressure measurements revealed validity of temperature-pressure superpositioning (TPS) for the alpha-peak. We also found that the value of the fragility index decreases with compression from m = 87 +/- 2 at atmospheric pressure to m = 72.5 +/- 3.5 at high pressure (p = 920 MPa). The drop of fragility observed in our experiment was discussed in the framework of the two-order-parameter (TOP) model. In addition, we have also studied crystallization kinetics in a liquid state of examined drug at ambient and high pressure. We found out that, for the same structural relaxation time/same viscosities, the samples prepared by compression of liquid at high temperatures have significantly elongated induction times as well as overall crystallization times (sample 2: t(0) approximately = 4 h, t(1/2) approximately = 37.5 h; sample 3: t(0) approximately = 5.6 h, t(1/2) approximately = 49 h) compared to that held at lower temperature and ambient pressure (sample 1: t(0) approximately = 1.2 h, t(1/2) approximately = 12.2 h). A possible explanation of this finding is also given.


New Journal of Physics | 2012

Scaling of viscous dynamics in simple liquids: theory, simulation and experiment

Lasse Bøhling; Trond S. Ingebrigtsen; Andrzej Grzybowski; M. Paluch; Jeppe C. Dyre; Thomas B. Schrøder

Supercooled liquids are characterized by relaxation times that increase dramatically by cooling or compression. From a single assumption follows a scaling law according to which the relaxation time is a function of h() over temperature, where is the density and the function h() depends on the liquid in question. This scaling is demonstrated to work well for simulations of the Kob-Andersen binary Lennard-Jones mixture and two molecular models, as well as for the experimental results for two van der Waals liquids, dibutyl phthalate and decahydroisoquinoline. The often used power- law density scaling, h() / , is an approximation to the more general form of scaling discussed here. A thermodynamic derivation was previously given for an explicit expression for h() for liquids of particles interacting via the generalized Lennard-Jones potential. Here a statistical mechanics derivation is given, and the prediction is shown to agree very well with simulations over large density changes. Our findings effectively reduce the problem of understanding the viscous slowing down from being a quest for a function of two variables to a search for a single-variable function.Supercooled liquids are characterized by relaxation times that increase dramatically by cooling or compression. Many liquids have been shown to obey power-law density scaling, according to which the relaxation time is a function of density to some power over temperature. We show that power-law density scaling breaks down for larger density variations than usually studied. This is demonstrated by simulations of the Kob-Andersen binary Lennard-Jones mixture and two molecular models, as well as by experimental results for two van der Waals liquids. A more general form of density scaling is derived, which is consistent with results for all the systems studied. An analytical expression for the scaling function for liquids of particles interacting via generalized Lennard-Jones potentials is derived and shown to agree very well with simulations. This effectively reduces the problem of understanding the viscous slowing down from being a quest for a function of two variables to a search for a single-variable function.


Journal of Physical Chemistry B | 2011

Glass Transition Dynamics of Room-Temperature Ionic Liquid 1-Methyl-3-trimethylsilylmethylimidazolium Tetrafluoroborate

Georgina Jarosz; Michal Mierzwa; J. Zioło; M. Paluch; Hideaki Shirota; K. L. Ngai

The conductivity relaxation dynamics of the room-temperature ionic liquid 1-methyl-3-trimethylsilylmethylimidazolium tetrafluoroborate ([Si-MIm][BF(4)]) have been studied by broadband conductivity relaxation measurements at ambient pressure and elevated pressures up to 600 MPa. For the first time, several novel features of the dynamics have been found in a room-temperature ionic liquid. In the electric loss modulus M″(f) spectra, a resolved secondary β-conductivity relaxation appears, and its relaxation time τ(β) shifts on applying pressure in concert with the relaxation time τ(α) of the primary α-conductivity relaxation. The spectral dispersion of the α-conductivity relaxation, as well as the fractional exponent (1 - n) of the Kohlrausch-Williams-Watts function that fits the spectral dispersion, is invariant to various combinations of pressure and temperature that keep τ(α) constant. Moreover, τ(β) is unchanged. Thus the three quantities, τ(α), τ(β), and n, are coinvariant to changes in pressure and temperature. This strong connection to the α-conductivity relaxation shown by the β-conductivity relaxation in [Si-MIm][BF(4)] indicates that it is the analogue of the Johari-Goldstein β-relaxation in nonionically conducting glass-formers. The findings have fundamental implications on theoretical interpretation of the conductivity relaxation processes and glass transition in ionic liquids. It is also the first time such a secondary conductivity relaxation or the primitive conductivity relaxation of the coupling model has been fully resolved and identified in M″(f) in any ionically conducting material that we know of.


Journal of Chemical Physics | 2012

Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model

K. L. Ngai; Junko Habasaki; Daniele Prevosto; Simone Capaccioli; M. Paluch

By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

Collaboration


Dive into the M. Paluch's collaboration.

Top Co-Authors

Avatar

K. Kaminski

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Z. Wojnarowska

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Pawlus

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Grzybowski

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Karolina Adrjanowicz

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

E. Kaminska

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Magdalena Tarnacka

University of Silesia in Katowice

View shared research outputs
Researchain Logo
Decentralizing Knowledge