M. R. Bell
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. R. Bell.
Astronomy and Astrophysics | 2012
Niels Oppermann; H. Junklewitz; G. Robbers; M. R. Bell; T. A. Enßlin; A. Bonafede; R. Braun; Jo-Anne Brown; T. E. Clarke; Ilana J. Feain; B. M. Gaensler; A. Hammond; L. Harvey-Smith; George Heald; M. Johnston-Hollitt; U. Klein; Philipp P. Kronberg; Shude Mao; N. M. McClure-Griffiths; S. P. O’Sullivan; Luke Pratley; Timothy Robishaw; Subhashis Roy; D. H. F. M. Schnitzeler; C. Sotomayor-Beltran; J. Stevens; J. M. Stil; C. Sunstrum; A. Tanna; A. R. Taylor
We aim to summarize the current state of knowledge regarding Galactic Faraday rotation in an all-sky map of the Galactic Faraday depth. For this we have assembled the most extensive catalog of Faraday rotation data of compact extragalactic polarized radio sources to date. In the map-making procedure we used a recently developed algorithm that reconstructs the map and the power spectrum of a statistically isotropic and homogeneous field while taking into account uncertainties in the noise statistics. This procedure is able to identify some rotation angles that are offset by an integer multiple of π. The resulting map can be seen as an improved version of earlier such maps and is made publicly available, along with a map of its uncertainty. For the angular power spectrum we find a power law behavior C� ∝ � −2.17 for a Faraday sky where an overall variance profile as a function of Galactic latitude has been removed, in agreement with earlier work. We show that this is in accordance with a 3D Fourier power spectrum P(k) ∝ k −2.17 of the underlying
Astronomy and Astrophysics | 2013
C. Sotomayor-Beltran; C. Sobey; J. W. T. Hessels; G. De Bruyn; A. Noutsos; A. Alexov; J. Anderson; A. Asgekar; I. M. Avruch; R. Beck; M. E. Bell; M. R. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; L. Bîrzan; A. Bonafede; F. Breitling; J. Broderick; W. N. Brouw; M. Brüggen; B. Ciardi; F. de Gasperin; R.-J. Dettmar; S. Duscha; J. Eislöffel; H. Falcke; R. A. Fallows; R. P. Fender; C. Ferrari
Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.
Astronomy and Astrophysics | 2012
F. de Gasperin; E. Orru; M. Murgia; Andrea Merloni; H. Falcke; R. Beck; R. J. Beswick; L. Bîrzan; A. Bonafede; M. Brüggen; G. Brunetti; K. T. Chyży; John Conway; J. H. Croston; T. A. Enßlin; C. Ferrari; George Heald; S. Heidenreich; N. Jackson; G. Macario; John McKean; George K. Miley; Raffaella Morganti; A. R. Offringa; R. Pizzo; David A. Rafferty; H. J. A. Röttgering; A. Shulevski; M. Steinmetz; C. Tasse
Context. M87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4×109 M, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15−30 MHz, 30−77 MHz and 116−162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz–10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intracluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radiospectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of 10 μG, which increases to 13 μG in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of 40 Myr, which in turn provides a jet kinetic power of 6−10 × 1044 erg s−1.
Astronomy and Astrophysics | 2012
R. J. van Weeren; H. J. A. Röttgering; David A. Rafferty; R. Pizzo; A. Bonafede; M. Brüggen; G. Brunetti; C. Ferrari; E. Orru; George Heald; John McKean; C. Tasse; F. de Gasperin; L. Bîrzan; J. E. van Zwieten; S. van der Tol; A. Shulevski; N. Jackson; A. R. Offringa; John Conway; H. T. Intema; T. E. Clarke; I. van Bemmel; G. K. Miley; G. J. White; M. Hoeft; R. Cassano; G. Macario; Raffaella Morganti; M. W. Wise
Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 +/- 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 +/- 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last similar to 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.
Astronomy and Astrophysics | 2013
A. R. Offringa; A. G. de Bruyn; Saleem Zaroubi; G. van Diepen; O. Martinez-Ruby; P. Labropoulos; M. A. Brentjens; B. Ciardi; S. Daiboo; G. Harker; Vibor Jelić; S. Kazemi; L. V. E. Koopmans; Garrelt Mellema; V. N. Pandey; R. Pizzo; Joop Schaye; H. Vedantham; V. Veligatla; Stefan J. Wijnholds; S. Yatawatta; P. Zarka; A. Alexov; J. Anderson; A. Asgekar; M. Avruch; R. Beck; M. E. Bell; M. R. Bell; Marinus Jan Bentum
Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFARs nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.
Astronomy and Astrophysics | 2013
Marco Selig; M. R. Bell; H. Junklewitz; Niels Oppermann; M. Reinecke; Maksim Greiner; Carlos Pachajoa; T. A. Enßlin
NIFTy, “Numerical Information Field Theory”, is a software package designed to enable the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for eciency. NIFTy oers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically without concerning the user. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTy permits its user to rapidly prototype algorithms in 1D, and then apply the developed code in higher-dimensional settings of real world problems. The set of spaces on which NIFTy operates comprises point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those. The functionality and diversity of the package is demonstrated by a Wiener filter code example that successfully runs without modification regardless of the space on which the inference problem is defined.
The Astronomical Journal | 2015
X. H. Sun; Lawrence Rudnick; Takuya Akahori; C. S. Anderson; M. R. Bell; J. D. Bray; J. S. Farnes; S. Ideguchi; Kohei Kumazaki; T. O'Brien; Shane P. O'Sullivan; Anna M. M. Scaife; R. Stepanov; J. M. Stil; Keitaro Takahashi; R. J. van Weeren; M. Wolleben
Faraday rotation measures (RMs) and more general Faraday structures are key parameters for studying cosmic magnetism and are also sensitive probes of faint ionized thermal gas. A definition of which derived quantities are required for various scientific studies is needed, as well as addressing the challenges in determining Faraday structures. A wide variety of algorithms has been proposed to reconstruct these structures. In preparation for the Polarization Sky Survey of the Universes Magnetism (POSSUM) to be conducted with the Australian Square Kilometre Array Pathfinder and the ongoing Galactic Arecibo L-band Feeds Array Continuum Transit Survey (GALFACTS), we run a Faraday structure determination data challenge to benchmark the currently available algorithms, including Faraday synthesis (previously called RM synthesis in the literature), wavelet, compressive sampling, and QU-fitting. The input models include sources with one Faraday thin component, two Faraday thin components, and one Faraday thick component. The frequency set is similar to POSSUM/GALFACTS with a 300 MHz bandwidth from 1.1 to 1.4 GHz. We define three figures of merit motivated by the underlying science: (1) an average RM weighted by polarized intensity, , (2) the separation of two Faraday components, and (3) the reduced chi-squared . Based on the current test data with a signal-to-noise ratio of about 32, we find the following. (1) When only one Faraday thin component is present, most methods perform as expected, with occasional failures where two components are incorrectly found. (2) For two Faraday thin components, QU-fitting routines perform the best, with errors close to the theoretical ones for but with significantly higher errors for . All other methods, including standard Faraday synthesis, frequently identify only one component when is below or near the width of the Faraday point-spread function. (3) No methods as currently implemented work well for Faraday thick components due to the narrow bandwidth. (4) There exist combinations of two Faraday components that produce a large range of acceptable fits and hence large uncertainties in the derived single RMs; in these cases, different RMs lead to the same behavior, so no method can recover a unique input model. Further exploration of all these issues is required before upcoming surveys will be able to provide reliable results on Faraday structures.
Astronomy and Astrophysics | 2016
H. Junklewitz; M. R. Bell; Marco Selig; T. A. Enßlin
We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.
Physical Review E | 2013
Niels Oppermann; Marco Selig; M. R. Bell; T. A. Enßlin
We develop a method to infer log-normal random fields from measurement data affected by Gaussian noise. The log-normal model is well suited to describe strictly positive signals with fluctuations whose amplitude varies over several orders of magnitude. We use the formalism of minimum Gibbs free energy to derive an algorithm that uses the signals correlation structure to regularize the reconstruction. The correlation structure, described by the signals power spectrum, is thereby reconstructed from the same data set. We show that the minimization of the Gibbs free energy, corresponding to a Gaussian approximation to the posterior marginalized over the power spectrum, is equivalent to the empirical Bayes ansatz, in which the power spectrum is fixed to its maximum a posteriori value. We further introduce a prior for the power spectrum that enforces spectral smoothness. The appropriateness of this prior in different scenarios is discussed and its effects on the reconstructions results are demonstrated. We validate the performance of our reconstruction algorithm in a series of one- and two-dimensional test cases with varying degrees of non-linearity and different noise levels.
Journal of Astrophysics and Astronomy | 2011
George Heald; M. R. Bell; A. Horneffer; André R. Offringa; R. Pizzo; Sebastiaan van der Tol; Reinout J. van Weeren; Joris E. van Zwieten; J. Anderson; R. Beck; Ilse Marina van Bemmel; L. Bîrzan; A. Bonafede; John Conway; C. Ferrari; Francesco de Gasperin; M. Haverkorn; N. Jackson; G. Macario; John McKean; H. Miraghaei; E. Orru; David A. Rafferty; Huub Röttgering; Anna M. M. Scaife; A. Shulevski; Carlos Sotomayor; C. Tasse; Monica Trasatti; O. Wucknitz
The Low-Frequency Array (LOFAR) is under construction in the Netherlands and in several surrounding European countries. In this contribution, we describe the layout and design of the telescope, with particular emphasis on the imaging characteristics of the array when used in its ‘standard imaging’ mode. After briefly reviewing the calibration and imaging software used for LOFAR image processing, we show some recent results from the ongoing imaging commissioning efforts. We conclude by summarizing future prospects for the use of LOFAR in observing the little-explored low-frequency Universe.