M. R. Vagins
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. R. Vagins.
Physical Review Letters | 2003
M. H. Ahn; S. Aoki; Hyoung Chan Bhang; S. Boyd; David William Casper; Jin-Oh Choi; Satoru Fukuda; Y. Fukuda; W. Gajewski; T. Hara; M. Hasegawa; T. Hasegawa; Y. Hayato; J. Hill; Atsushi Ichikawa; A. Ikeda; T. Inagaki; T. Ishida; T. Ishii; M. Ishitsuka; Y. Itow; T. Iwashita; H.I. Jang; J. S. Jang; E. J. Jeon; C. K. Jung; T. Kajita; J. Kameda; K. Kaneyuki; I. Kato
The K2K experiment observes indications of neutrino oscillation: a reduction of nu(mu) flux together with a distortion of the energy spectrum. Fifty-six beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the neutrino production point, with an expectation of 80.1(+6.2)(-5.4). Twenty-nine one ring mu-like events are used to reconstruct the neutrino energy spectrum, which is better matched to the expected spectrum with neutrino oscillation than without. The probability that the observed flux at SK is explained by statistical fluctuation without neutrino oscillation is less than 1%.
Physical Review Letters | 2004
John F. Beacom; M. R. Vagins
We propose modifying large water C erenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with summation operatorE(gamma)=8 MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction nu (e)+p-->e(+)+n (similarly for nu (mu)). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed.
Physical Review Letters | 2003
John F. Beacom; M. R. Vagins
We propose modifying large water C erenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with summation operatorE(gamma)=8 MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction nu (e)+p-->e(+)+n (similarly for nu (mu)). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed.
The Astrophysical Journal | 2013
Scott M. Adams; C. S. Kochanek; John F. Beacom; M. R. Vagins; K. Z. Stanek
No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability ( 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely ( 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of per century and a Galactic SN Ia rate of per century for a total Galactic SN rate of per century is needed to account for the SNe observed over the last millennium, which implies a Galactic star formation rate of M ☉ yr–1.
Physical Review D | 2014
K. Abe; Y. Hayato; K. Iyogi; J. Kameda; M. Miura; S. Moriyama; M. Nakahata; S. Nakayama; R. Wendell; H. Sekiya; M. Shiozawa; Y. Suzuki; A. Takeda; Y. Takenaga; K. Ueno; T. Yokozawa; H. Kaji; T. Kajita; K. Kaneyuki; K. P. Lee; K. Okumura; T. McLachlan; L. Labarga; E. Kearns; J. L. Raaf; J. L. Stone; L. Sulak; M. Goldhaber; K. Bays; G. Carminati
We have searched for proton decay via p→νK+ using Super-Kamiokande data from April 1996 to February 2013, 260 kiloton•year exposure in total. No evidence for this proton decay mode is found. A lower limit of the proton lifetime is set to τ/B(p→νK+)>5.9×1033 years at 90% confidence level.
Lawrence Berkeley National Laboratory | 2008
A. Bernstein; E. Blucher; D. Cline; M. V. Diwan; B. T. Fleming; R. Kadel; E. Kearns; Jeff Klein; K. Lande; Francesco Lanni; D. Lissauer; R. D. McKeown; W. M. Morse; R. Radeika; K. Scholberg; M. Smy; H. W. Sobel; G. W. Sullivan; R. Svoboda; M. R. Vagins; C. W. Walter; R. Zwaska
This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of hundreds of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent in a mountain. Projections for signal and background capability for a larger and deeper (or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which should provide enhanced capability for background rejection. We have based background rejection on reasonable estimates of track and energy resolution, and in some cases scaled background rates from measurements in water. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the currently planned detectors or new technologies. Therefore the depth requirement also needs to be made on the basis of sound judgment regarding possible future use. In particular, the depth should be sufficient for any possible future use of these cavities or the level which will be developed for these large structures. Along with these physics justifications there are practical issues regarding the existing infrastructure at Homestake and also the stress characteristics of the Homestake rock formations. In this report we will examine the various depth choices at Homestake from the point of view of the particle and nuclear physics signatures of interest. We also have sufficient information about the existing infrastructure and the rock characteristics to narrow the choice of levels for the development of large cavities with long lifetimes. We make general remarks on desirable ground conditions for such large cavities and then make recommendations on how to start examining these levels to make a final choice. In the appendix we have outlined the initial requirements for the detectors. These requirements will undergo refinement during the course of the design. Finally, we strongly recommend that the geotechnical studies be commenced at the 4850 ft level, which we find to be the most suitable, in a timely manner.
The Astrophysical Journal | 2015
Takaaki Yokozawa; Mitsuhiro Asano; T. Kayano; Yudai Suwa; Nobuyuki Kanda; Y. Koshio; M. R. Vagins
The next time a core-collapse supernova (SN) explodes in our galaxy, vari- ous detectors will be ready and waiting to detect its emissions of gravitational waves (GWs) and neutrinos. Current numerical simulations have successfully introduced multi-dimensional effects to produce exploding SN models, but thus far the explosion mechanism is not well understood. In this paper, we focus on an investigation of progenitor core rotation via comparison of the start time of GW emission and that of the neutronization burst. The GW and neutrino de- tectors are assumed to be, respectively, the KAGRA detector and a co-located gadolinium-loaded water Cherenkov detector, either EGADS or GADZOOKS!. Our detection simulation studies show that for a nearby supernova (0.2 kpc) we can confirm the lack of core rotation close to 100% of the time, and the presence of core rotation about 90% of the time. Using this approach there is also po- tential to confirm rotation for considerably more distant Milky Way supernova explosions.
Archive | 2004
M. R. Vagins
The experimental status of relic supernova neutrino detection is discussed, with particular emphasis on the Super-Kamiokande experiment. Presently under study, a novel proposed modification to existing and future water Cherenkov detectors is introduced. Enabling such detectors to identify neutrons will significantly enhance their capabilities for relic supernova neutrino detection as well as for a wide variety of other physics topics. If all R&D efforts go as expected, a modified Super-Kamiokande could observe the world’s first relic supernova neutrino signal within the next four years.
Physical Review Letters | 1998
M. Shiozawa; Y. Fukuda; T. Hayakawa; E. Ichihara; Koji Inoue; K. Ishihara; H. Ishino; Y. Itow; T. Kajita; J. Kameda; S. Kasuga; K. Kobayashi; Y. Koshio; M. Miura; M. Nakahata; S. Nakayama; Atsushi Okada; M. Oketa; K. Okumura; M. Ota; N. Sakurai; Y. Suzuki; Y. Takeuchi; Y. Totsuka; Sumio Yamada; M. Earl; A. Habig; E. Kearns; K. Scholberg; J. L. Stone
報告番号: 乙14530 ; 学位授与年月日: 2000-01-24 ; 学位の種別: 論文博士 ; 学位の種類: 博士(理学) ; 学位記番号: 第14530号 ; 研究科・専攻: 理学系研究科We have searched for proton decay via p{r_arrow}e{sup +}{pi}{sup 0} using data from a 25.5 kton{center_dot}yr exposure of the Super-Kamiokande detector. We find no candidate events with an expected background induced by atmospheric neutrinos of 0.1thinspthinspevents. From these data, we set a lower limit on the partial lifetime of the proton {tau}/B{sub p{r_arrow}e{sup +}{pi}{sup 0}} to be 1.6{times}10{sup 33} years at a 90{percent} confidence level. {copyright} {ital 1998} {ital The American Physical Society }
arXiv: High Energy Physics - Experiment | 2011
K. Abe; T. Nakaya; K. Huang; A. Takeda; K. Okumura; Y. Koshio; M. R. Vagins; Atsushi Ichikawa; Y. Nishimura; K. Inoue; K. P. Lee; J. Kameda; S. Moriyama; Y. Kishimoto; H. Sekiya; A. Minamino; Y. Itow; A. T. Suzuki; T. Kajita; H. Aihara; M. Shiozawa; K. Nakamura; Y. Obayashi; Y. Hayato; H. Ishino; M. Nakahata; Y. Fukuda; M. Ikeda; Y. Takeuchi; M. Yokoyama