M. Radovic
Paul Scherrer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Radovic.
Nature Communications | 2014
A. Chikina; M. Höppner; S. Seiro; Kurt Kummer; S. Danzenbächer; S. Patil; Alexander V. Generalov; M. Güttler; Yu. Kucherenko; E. V. Chulkov; Yu. M. Koroteev; K. Koepernik; C. Geibel; M. Shi; M. Radovic; C. Laubschat; D. V. Vyalikh
Carrying a large, pure spin magnetic moment of 7 μB per atom in the half-filled 4f shell, divalent europium is an outstanding element for assembling novel magnetic devices in which a two-dimensional electron gas may be polarized due to exchange interaction with an underlying magnetically-active Eu layer. Here we show that the Si-Rh-Si surface trilayer of the antiferromagnet EuRh2Si2 bears a surface state, which exhibits an unexpected and large spin splitting controllable by temperature. The splitting sets in below ~32.5 K, well above the ordering temperature of the Eu 4f moments (~24.5 K) in the bulk, indicating a larger ordering temperature in the topmost Eu layers. The driving force for the itinerant ferromagnetism at the surface is the aforementioned exchange interaction. Such a splitting may also be induced into states of functional surface layers deposited onto the surface of EuRh2Si2 or similarly ordered magnetic materials with metallic or semiconducting properties.
Applied Physics Letters | 2010
P. Perna; D. Maccariello; M. Radovic; U. Scotti di Uccio; I. Pallecchi; M. Codda; D. Marré; Claudia Cantoni; Jaume Gazquez; M. Varela; S. J. Pennycook; F. Miletto Granozio
We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluate the abruptness of the interface. Their carrier density and sheet resistance are compared to the case of LaAlO3/SrTiO3 and a superconducting transition is found. The results open the route to widening the field of polar-nonpolar interfaces, pose some phenomenological constrains to their underlying physics and highlight the chance of tailoring their properties for future applications by adopting suitable polar materials.
Nature Communications | 2016
N. Xu; Hongming Weng; B. Q. Lv; C. E. Matt; J. Park; F. Bisti; V. N. Strocov; D. Gawryluk; E. Pomjakushina; K. Conder; N. C. Plumb; M. Radovic; G. Autès; Oleg V. Yazyev; Zhong Fang; X. Dai; T. Qian; J. Mesot; H. Ding; M. Shi
A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only a single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs.
Nature Communications | 2014
N. Xu; P. K. Biswas; J. H. Dil; R. S. Dhaka; Gabriel Landolt; Stefan Muff; C. E. Matt; X. Shi; Nicholas C. Plumb; M. Radovic; E. Pomjakushina; K. Conder; A. Amato; S. V. Borisenko; R. Yu; H. M. Weng; Z. Fang; Xi Dai; J. Mesot; H. Ding; M. Shi
Topological Kondo insulators have been proposed as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to strong spin-orbit coupling. In contrast to other three-dimensional topological insulators, a topological Kondo insulator is truly bulk insulating. Furthermore, strong electron correlations are present in the system, which may interact with the novel topological phase. By applying spin- and angle-resolved photoemission spectroscopy, here we show that the surface states of SmB6 are spin polarized. The spin is locked to the crystal momentum, fulfilling time reversal and crystal symmetries. Our results provide strong evidence that SmB6 can host topological surface states in a bulk insulating gap stemming from the Kondo effect, which can serve as an ideal platform for investigating of the interplay between novel topological quantum states with emergent effects and competing orders induced by strongly correlated electrons.
New Journal of Physics | 2011
M. Moretti Sala; Valentina Bisogni; C. Aruta; G. Balestrino; H. Berger; N. B. Brookes; G. M. De Luca; D. Di Castro; M. Grioni; M Guarise; P. G. Medaglia; F. Miletto Granozio; M. Minola; P. Perna; M. Radovic; M. Salluzzo; Thorsten Schmitt; K. J. Zhou; L. Braicovich; G. Ghiringhelli
We measured the high-resolution Cu L-3 edge resonant inelastic x-ray scattering (RIXS) of undoped cuprates La2CuO4, Sr2CuO2Cl2, CaCuO2 and NdBa2Cu3O6. The dominant spectral features were assigned to dd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used these to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3d states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single-ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dd excitation energies carries important consequences for the physics of high-T-c superconductors. On the one hand, we found that the minimum energy of orbital excitation is always >= 1.4 eV, i.e. well above the mid-infrared spectral range, which leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dd excitations on the superconducting gap in cuprates.
Applied Physics Letters | 2007
A. Sambri; S. Amoruso; X. Wang; M. Radovic; F. Miletto Granozio; R. Bruzzese
We investigate the effects of the substrate-heater temperature on the expansion dynamics of laser plumes of complex oxides in oxygen atmosphere. We observed a considerable reduction of the background gas resistance to plume propagation as the substrate temperature was increased, leading to a remarkable change in the velocity of the species impacting the substrate during film growth. The deposition temperature thus influences film growth not only through its direct thermal effect on surface kinetics of adatoms, but also by affecting the energetic properties of the precursors in the gas phase. We interpret the results with a simplified model of plume front propagation, accounting for the change in the background gas density induced by the substrate temperature.
Nature Materials | 2016
Z. B. Wang; S. McKeown Walker; A. Tamai; Yung Jui Wang; Z. Ristic; F. Y. Bruno; A. de la Torre; S. Riccò; N. C. Plumb; M. Shi; P. Hlawenka; J. Sánchez-Barriga; A. Varykhalov; T. K. Kim; M. Hoesch; P. D. C. King; W. Meevasana; Ulrike Diebold; J. Mesot; Brian Moritz; T. P. Devereaux; M. Radovic; F. Baumberger
Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.
Physical Review B | 2011
Kejin Zhou; M. Radovic; Justine Schlappa; V. N. Strocov; Ruggero Frison; J. Mesot; L. Patthey; Thorsten Schmitt
Understanding the nature of electrical conductivity, superconductivity and magnetism between layers of oxides is of immense importance for the design of electronic devices employing oxide heterostructures. We demonstrate that resonant inelastic X-ray scattering can be applied to directly probe the carriers in oxide heterostructures. Our investigation on epitaxially grown LaAlO3/SrTiO3 superlattices unambiguously reveals the presence of both localized and delocalized Ti 3d carriers. These two types of carriers are caused by oxygen vacancies and electron transfer due to the polar discontinuity at the interface. This result allows explaining the reported discrepancy between theoretically calculated and experimentally measured carrier density values in LaAlO3/SrTiO3 heterostructures.
Physical Review B | 2012
R. Di Capua; M. Radovic; G. M. De Luca; Ivan Maggio-Aprile; F. Miletto Granozio; N. C. Plumb; Z. Ristic; U. Scotti di Uccio; R. Vaglio; M. Salluzzo
An extensive surface characterization of hydrofluoric acid (HF) etched and annealed SrTiO3 single crystals, vacuum-annealed below 300 degrees C, reveals the formation of a two-dimensional electron gas (2DEG). A joint scanning tunneling spectroscopy and low-energy electron diffraction analysis allows us to associate the surface metallic state (characterized by the presence of a nonzero density of states close to the Fermi level) with the low-temperature-annealed highly ordered 1 x 1 reconstructed SrTiO3 surface hosting two-dimensional carriers. Meanwhile, a gap opens in the tunneling spectrum of 2 x 1 reconstructed, high-temperature-annealed surfaces. X-ray photoemission spectroscopy shows that the metallic state is associated with the surface formation of Ti3+. Recently published photoemission data demonstrated the formation of a 2DEG on the surface of cleaved SrTiO3, while scanning tunneling spectroscopy on crystals heated at high temperature revealed gaplike features: Our results can help reconcile this seemingly contradicting phenomenology observed so far by scanning tunneling spectroscopy and photoemission spectroscopy.
Applied Physics Letters | 2009
M. Radovic; Nathascia Lampis; F. Miletto Granozio; P. Perna; Z. Ristic; M. Salluzzo; C. M. Schlepütz; U. Scotti di Uccio
A simple technique for the growth of SrO-terminated SrTiO3 surfaces is reported. High quality SrTiO3 epitaxial films were grown by reflection high energy electron diffraction assisted pulsed laser deposition on suitably prepared NdGaO3 (110) substrates. The surface properties, analyzed within a growth/characterization multichamber ultrahigh vacuum system by photoemission spectroscopy performed on the core-level spectra of Sr and Ti, low energy electron diffraction-, scanning tunneling-, and atomic force microscopy, are fully consistent with a single Sr oxide termination. The availability of such high quality SrO-terminated SrTiO3 surfaces is of major importance for the controlled growth of oxide epilayers and interfaces.