M. Raman
Tamil Nadu Veterinary and Animal Sciences University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Raman.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Damer P. Blake; Emily L. Clark; Sarah E. Macdonald; Venkatachalam Thenmozhi; Krishnendu Kundu; Rajat Garg; Isa D. Jatau; Simeon Ayoade; Fumiya Kawahara; Abdalgader Moftah; Adam J. Reid; Ayotunde O. Adebambo; Ramón Álvarez Zapata; Arni S.R. Srinivasa Rao; Kumarasamy Thangaraj; P.S. Banerjee; G. Dhinakar-Raj; M. Raman; Fiona M. Tomley
Significance Sixty billion chickens are produced worldwide each year, and all are at risk from Eimeria, parasites that cause coccidiosis. Control relies widely on chemoprophylaxis, but pressure to reduce drug use in farming urges development of cost-effective vaccines. Antigens such as apical membrane antigen 1 (AMA1) offer promise as anticoccidial vaccine candidates, but experience with related apicomplexans such as Plasmodium, in which pre-existing antigenic diversity and incompatible population structure have undermined vaccine development, tempers confidence. Parasite genotyping identified enormous region-specific variation in haplotype diversity for Eimeria tenella but a contrastingly low level of polymorphism for EtAMA1. Although high levels of polyclonal Eimeria infection and hybridization indicate an ability to disseminate vaccine resistance rapidly, the low level of EtAMA1 diversity promotes vaccine development. The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host.
International Journal for Parasitology | 2015
Umer Chaudhry; Elizabeth Redman; M. Raman; John S. Gilleard
It is important to understand how anthelmintic drug resistance mutations arise and spread in order to determine appropriate mitigation strategies. We hypothesised that a molecular genetic study of Haemonchus contortus in southern India, a region where resistance may be less advanced than in western Europe and North America, might provide some important insights into the origin and spread of anthelmintic resistance. The F200Y (TAC) isotype-1 β-tubulin benzimidazole resistance mutation is common in H. contortus throughout the world and the F167Y (TAC) and E198A (GCA) mutations, although less common, have been reported in a number of different countries. We have investigated the haplotypic diversity and phylogenetic relationship of isotype-1 β-tubulin benzimidazole resistance alleles for 23 H. contortus populations from small ruminants across southern India. The F200Y (TAC) mutation was most common, being detected in 18/23 populations at frequencies between 9% and 84% and the E198A (GCA) mutation was also detected in 8/23 populations at frequencies between 8% and 18%. The F167Y (TAC) mutation was not detected in any of the 23 populations. Phylogenetic haplotype network analysis suggested that the F200Y (TAC) mutation has arisen multiple independent times in the region with at least three independent origins of resistance alleles across the populations surveyed. In contrast, the E198A (GCA) mutation was present on a single haplotype which, given the high level of haplotypic diversity of the susceptible alleles in the region, suggests this particular mutation has spread from a single origin, likely by anthropogenic animal movement. Population genetic analysis of 12 of the H. contortus populations, using a panel of eight microsatellite markers, revealed extremely low genetic differentiation between populations, consistent with the hypothesis of high gene flow among sites. Additionally, there was no significant genetic differentiation between H. contortus taken from sheep and goats which is consistent with H. contortus populations being freely shared between these two different hosts. Overall, we believe these results provide the first clear genetic evidence for the spread of an anthelmintic resistance mutation to multiple different locations from a single origin.
Parasitology Research | 2010
S. Aarthi; Gopal Dhinakar Raj; M. Raman; S. Gomathinayagam; K. Kumanan
Coccidosis is one of the most commonly prevalent and economically important parasitic diseases of poultry worldwide. Chicken coccidia are protozoan parasites of the genus Eimeria. This study aimed at analysing the molecular prevalence of seven species of Eimeria infecting chickens in Tamil Nadu, India. Tissue samples (caecum, rectum and upper and mid intestines) collected from chickens exhibiting symptoms of coccidiosis were used for DNA extraction, followed by amplification of the internal transcribed spacer (ITS) region of Eimeria genome with genus-specific primers and speciation in nested polymerase chain reaction (PCR) with species-specific primers. Of 43 tissue samples examined, 25 were positive in ITS PCR and all the seven species could be identified. However, the prevalence of each species varied. In broilers, Eimeria necatrix was present in all infected chickens with Eimeria brunetti, Eimeria tenella, Eimeria maxima and Eimeria acervulina present in more than 50% of infected chickens, while Eimeria praecox and Eimeria mitis were only present in 11% to 16%. Although only 7 samples were positive among layers, the prevalence was largely similar, but with a higher prevalence of E. praecox and E. mitis and a lower prevalence of E. tenella. Multiple infections were most common, with 2–6 Eimeria species infecting the same chickens. In order to estimate the preponderance of each infecting species of Eimeria, a random cloning technique was adopted. The genus-specific ITS PCR product was cloned in a TA vector and ten clones were randomly picked and used as template for amplification of all the seven genera of Eimeria. If the specific species of Eimeria is preponderant, then the frequency of the clones showing that species-specific PCR amplification would be higher. Using this method, the most preponderant species present in the rectum, mid and upper intestines of layers was assessed to be E. acervulina, E. brunetti and E. necatrix. E. acervulina was present in 60–90%, E. necatrix in 10–30% and E. brunetti in 10–20% of the clones screened, indicating that these species could be the most preponderant Eimeria species. Intervention strategies should aim at these species. This new method of estimating preponderance of infecting Eimeria species could be used to assess the relative importance of each species at the farm or region level instead of relying only on prevalence estimates.
International Journal for Parasitology | 2016
Emily L. Clark; Sarah E. Macdonald; V. Thenmozhi; Krishnendu Kundu; Rajat Garg; Saroj Kumar; Simeon Ayoade; Kimberly Fornace; Isa D. Jatau; Abdalgader Moftah; Matthew J. Nolan; N.R. Sudhakar; Ayotunde O. Adebambo; Idris A. Lawal; Ramón Álvarez Zapata; Joseph A. Awuni; H. David Chapman; Esron D. Karimuribo; Claire M. Mugasa; Boniface Namangala; Jonathan Rushton; Xun Suo; Kumarasamy Thangaraj; Arni S.R. Srinivasa Rao; A. K. Tewari; P.S. Banerjee; G. Dhinakar Raj; M. Raman; Fiona M. Tomley; Damer P. Blake
Graphical abstract
Journal of Proteome Research | 2012
Russell M. Morphew; Neil Eccleston; Toby J. Wilkinson; John McGarry; Samirah Perally; Mark C. Prescott; Deborah Ward; Diana J.L. Williams; Steve Paterson; M. Raman; Gopalakrishnan Ravikumar; M. Khalid Saifullah; S. M. Abbas Abidi; Paul McVeigh; Aaron G. Maule; Peter M. Brophy; E. James LaCourse
Fasciolosis is an important foodborne, zoonotic disease of livestock and humans, with global annual health and economic losses estimated at several billion US
Avian Pathology | 2013
Gopal Dhinakar Raj; S. Aarthi; R Selvabharathi; M. Raman; Damer P. Blake; Fiona M. Tomley
. Fasciola hepatica is the major species in temperate regions, while F. gigantica dominates in the tropics. In the absence of commercially available vaccines to control fasciolosis, increasing reports of resistance to current chemotherapeutic strategies and the spread of fasciolosis into new areas, new functional genomics approaches are being used to identify potential new drug targets and vaccine candidates. The glutathione transferase (GST) superfamily is both a candidate drug and vaccine target. This study reports the identification of a putatively novel Sigma class GST, present in a water-soluble cytosol extract from the tropical liver fluke F. gigantica. The GST was cloned and expressed as an enzymically active recombinant protein. This GST shares a greater identity with the human schistosomiasis GST vaccine currently at Phase II clinical trials than previously discovered F. gigantica GSTs, stimulating interest in its immuno-protective properties. In addition, in silico analysis of the GST superfamily of both F. gigantica and F. hepatica has revealed an additional Mu class GST, Omega class GSTs, and for the first time, a Zeta class member.
Parasitology Research | 2011
S. Aarthi; Gopal Dhinakar Raj; M. Raman; Damer P. Blake; Chandra Subramaniam; Fiona M. Tomley
Eimeria species parasites can cause the disease coccidiosis in all livestock species, most notably poultry. Traditional diagnostics such as faecal microscopy have now been supplemented by molecular assays including genus-specific and species-specific quantitative polymerase chain reaction (qPCR), although DNA extracted from faecal samples is commonly affected by PCR inhibition. This was confirmed when genomic DNA extracted from chicken faeces inhibited the threshold cycle value of internal positive control (IPC) DNA amplification by 15.33%. Hence, the objective of the present study was to use IPC qPCR to determine PCR inhibition in a series of experimental samples and use the increase in IPC qPCR threshold cycle value as an individual (sample-specific) correction factor for an established 5S rDNA qPCR used to estimate total Eimeria genome numbers. IPC-corrected genome counts were correlated with conventional oocyst per gram counts and compared with non-corrected counts, revealing a 0.1769 increase in correlation coefficient to outweigh underestimation of oocyst counts. Though the sample size used in this study is small, this limitation would be offset by the sample-specific correction factor determined using the IPC along with each sample.
Materials Science and Engineering: C | 2016
Kaliyaperumal Viswanathan; P. Monisha; M. Srinivasan; D. Swathi; M. Raman; G. Dhinakar Raj
As a first attempt to generate sequence information from the protein-coding genes of the genomically unknown parasite, Eimeria brunetti, a cDNA library was generated from purified sporozoites in the λTriplEx2™ vector. Analysis of 283 expressed sequence tags (ESTs) from the cDNA library constructed revealed 12 contigs (26 ESTs) and 257 singletons. BLASTx analysis revealed that 50 transcripts had significant matches to known proteins, whereas the remaining 233 had no significant matches, probably representing novel genes. Based on Gene Ontology classification, the transcripts were categorized as biological process (46 ESTs), molecular function (37 ESTs), and cellular component (19 ESTs). The transcripts analyzed show maximum homology to the apicomplexan parasite Toxoplasma gondii. Despite the small number of transcripts, this is the first transcriptome analysis of E. brunetti and provides preliminary data that will increase understanding of parasite biological function.
Veterinary Parasitology | 2017
B. Chengat Prakashbabu; V. Thenmozhi; Georgina Limon; Krishnendu Kundu; Saroj Kumar; Rajat Garg; Emily L. Clark; A.s.r.srinivasa Rao; D.g. Raj; M. Raman; P.S. Banerjee; Fiona M. Tomley; Javier Guitian; Damer P. Blake
In this work, we developed a wound healing cream composed of two different polymers, namely chitosan and gelatin with chlorhexidine along with calcium phosphate nanoparticles. The physicochemical properties of the prepared cream were investigated based on SEM, EDX, Raman, FTIR and the results indicated that the cream contained gelatin, chitosan, calcium phosphate nanoparticles and chlorhexidine. The maximum swelling ratio studies indicated that the ratio was around of 52±2.2 at pH7.4 and the value was increased in acidic and alkaline pH. The antimicrobial activity was tested against bacteria and the results indicated that, both chlorhexidine and the hybrid cream devoid of chlorhexidine exhibited antimicrobial activity but the chlorhexidine impregnated cream showed three fold higher antimicrobial activity than without chlorhexidine. In vivo wound healing promoting activities of hybrid cream containing 0.4mg/L chlorhexidine were evaluated on surgically induced dermal wounds in mice. The results indicated that the cream with incorporated chlorhexidine significantly enhanced healing compared with the control samples. For the field validations, the veterinary clinical animals were treated with the cream and showed enhanced healing capacity. In conclusion, a simple and efficient method for design of a novel wound healing cream has been developed for veterinary applications.
Journal of Proteome Research | 2016
Russell M. Morphew; Toby J. Wilkinson; Neil Mackintosh; Veronika Jahndel; Steve Paterson; Paul McVeigh; S. M. A. Abidi; Khalid Saifullah; M. Raman; Gopalakrishnan Ravikumar; James LaCourse; Aaron G. Maule; Peter M. Brophy
Highlights • Multivariate analysis revealed comparable poultry clusters in north and south India.• Eimeria species occurrence varied between system clusters.• E. tenella occurrence across systems may underpin region-specific genetic diversity.• E. necatrix was found to be more common in north than south India.