Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Richetta is active.

Publication


Featured researches published by M. Richetta.


Physics of Plasmas | 2014

Generation of high pressure shocks relevant to the shock-ignition intensity regime

D. Batani; L. Antonelli; S. Atzeni; J. Badziak; F. Baffigi; T. Chodukowski; F. Consoli; G. Cristoforetti; R. De Angelis; R. Dudzak; G. Folpini; L. Giuffrida; L. A. Gizzi; Z. Kalinowska; P. Koester; E. Krousky; M. Krus; L. Labate; T Levato; Y. Maheut; G. Malka; D. Margarone; A. Marocchino; J. Nejdl; Ph. Nicolaï; T O'Dell; T. Pisarczyk; O. Renner; Yong-Joo Rhee; X. Ribeyre

An experiment was performed using the PALS laser to study laser-target coupling and laser-plasma interaction in an intensity regime ≤1016 W/cm2, relevant for the “shock ignition” approach to Inertial Confinement Fusion. A first beam at low intensity was used to create an extended preformed plasma, and a second one to create a strong shock. Pressures up to 90 Megabars were inferred. Our results show the importance of the details of energy transport in the overdense region.


Plasma Physics and Controlled Fusion | 2009

Fast-electron transport in cylindrically laser-compressed matter

F. Perez; M. Koenig; D. Batani; S. D. Baton; F. N. Beg; C. Benedetti; E. Brambrink; S Chawla; F Dorchies; C Fourment; M. Galimberti; La Gizzi; R. Heathcote; D P Higginson; S. Hulin; R. Jafer; P. Koester; L. Labate; K. L. Lancaster; A. J. Mackinnon; A. McPhee; W. Nazarov; Ph. Nicolaï; J. Pasley; A Ravasio; M. Richetta; J J Santos; A. Sgattoni; Ch. Spindloe; B. Vauzour

Experimental and theoretical results of relativistic electron transport in cylindrically compressed matter are presented. This experiment, which is a part of the HiPER roadmap, was achieved on the VULCAN laser facility (UK) using four long pulses beams (~4 × 50 J, 1 ns, at 0.53 µm) to compress a hollow plastic cylinder filled with plastic foam of three different densities (0.1, 0.3 and 1 g cm−3). 2D simulations predict a density of 2–5 g cm−3 and a plasma temperature up to 100 eV at maximum compression. A short pulse (10 ps, 160 J) beam generated fast electrons that propagate through the compressed matter by irradiating a nickel foil at an intensity of 5 × 1018 W cm−2. X-ray spectrometer and imagers were implemented in order to estimate the compressed plasma conditions and to infer the hot electron characteristics. Results are discussed and compared with simulations.


Physics of Plasmas | 2011

Proton radiography of laser-driven imploding target in cylindrical geometry

L. Volpe; D. Batani; B. Vauzour; Ph. Nicolaï; J. J. Santos; C. Regan; A. Morace; F. Dorchies; C. Fourment; S. Hulin; F. Perez; S. D. Baton; K. L. Lancaster; M. Galimberti; R. Heathcote; M. Tolley; Ch. Spindloe; P. Koester; L. Labate; L. A. Gizzi; C. Benedetti; A. Sgattoni; M. Richetta; J. Pasley; F. N. Beg; S. Chawla; D.P. Higginson; A. G. MacPhee

An experiment was done at the Rutherford Appleton Laboratory (Vulcan laser petawatt laser) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This was performed in the framework of the experimental road map of HiPER (the European high power laser energy research facility project). In the experiment, protons accelerated by a picosecond-laser pulse were used to radiograph a 220 μm diameter cylinder (20 μm wall, filled with low density foam), imploded with ∼200 J of green laser light in four symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to get the compression history and the stagnation time. Results are also compared to those from hard x-ray radiography. Detailed comparison with two-dimensional numerical hydrosimulations has been done using a Monte Carlo code adapted to describe multiple scattering and plasma effects. Finally we develop a simple analytical model to estimate the performance of prot...


Physics of Plasmas | 2011

Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas

B. Vauzour; F. Pérez; L. Volpe; K. L. Lancaster; Ph. Nicolaï; D. Batani; S. D. Baton; F. N. Beg; C. Benedetti; E. Brambrink; S. Chawla; F. Dorchies; C. Fourment; M. Galimberti; La Gizzi; R. Heathcote; D.P. Higginson; S. Hulin; R. Jafer; P. Köster; L. Labate; A. J. Mackinnon; A. G. MacPhee; W. Nazarov; J. Pasley; C. Regan; X. Ribeyre; M. Richetta; G. Schurtz; A. Sgattoni

Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma. In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed on the VULCAN laser facility where the propagation of relativistic electron beams through cylindrically compressed plastic targets was studied. In this paper, we characterize the plasma parameters such as temperature and density during the compression of cylindrical polyimide shells filled with CH foams at three different initial densities. X-ray and proton radiography were used to measure the cylinder radius at different stages of the compression. By comparing both diagnostics results with 2D hydrodynamic simulations, we could infer densities from 2 to 11 g/cm3 and temperatures from 30 to 120 eV at maximum compression at the center of targets. According to the initial foam density, kinetic, coupled (sometimes degenerated) plasmas were obtained. The temporal and spatial evolution of the resulting areal densities a...


Journal of Physics: Conference Series | 2012

Preliminary results from recent experiments and future roadmap to Shock Ignition of Fusion Targets

D. Batani; G. Malka; G. Schurtz; X. Ribeyre; E. LeBel; L. Giuffrida; V. T. Tikhonchuk; L Volpe; A Patria; P. Koester; L. Labate; L. A. Gizzi; L Antonelli; M. Richetta; J. Nejdl; M. Sawicka; D. Margarone; M. Krus; E. Krousky; J. Skala; R. Dudzak; A. Velyhan; J Ullshmied; O. Renner; M. Smid; O Klimo; S. Atzeni; A. Marocchino; A. Schiavi; C. Spindloe

Shock ignition (SI) is a new approach to Inertial Confinement Fusion (ICF) based on decoupling the compression and ignition phase. The last one relies on launching a strong shock through a high intensity laser spike (≤ 1016 W/cm2) at the end of compression. In this paper, first we described an experiment performed using the PALS iodine laser to study laser-target coupling and laser-plasma interaction in an intensity regime relevant for SI. A first beam with wavelength λ = 1.33 μm and low intensity was used to create an extended preformed plasma, and a second one with λ = 0.44 μm to create a strong shock. Several diagnostics characterized the preformed plasma and the interaction of the main pulse. Pressure up to 90 Mbar was inferred. In the last paper of the paper, we discuss the relevant steps, which can be followed in order to approach the demonstration of SI on laser facilities like LMJ.


8th International Conference on Inertial Fusion Sciences and Applications, IFSA 2013 | 2016

Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition

L Antonelli; P Köster; G. Folpini; Y. Maheut; F. Baffigi; G. Cristoforetti; L. Labate; T Levato; L. A. Gizzi; F. Consoli; R. De Angelis; Z. Kalinowska; T. Chodukowski; M. Rosinski; P. Parys; T. Pisarczyk; P Raczka; L. Ryć; J. Badziak; J. Wolowski; M. Smid; O. Renner; E. Krousky; M. Pfeifer; J. Skala; J. Ullschmied; Ph. Nicolaï; X. Ribeyre; G Shurtz; S. Atzeni

We present experimental results at intensities relevant to Shock Ignition obtained at the sub-ns Prague Asterix Laser System in 2012. We studied shock waves produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at 1ω (1315 nm) at 7 x 1013 W/cm2 to create a pre-plasma on the front side of the target and a second at 3ω (438 nm) at ~ 1016 W/cm2 to create the shock wave. Multilayer targets composed of 25 (or 40 µm) of plastic (doped with Cl), 5 µm of Cu (for Kα diagnostics) and 20 µm of Al for shock measurement were used. We used X-ray spectroscopy of Cl to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and spectral properties of the fast electrons and a streak camera for shock breakout measurements. Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and Two Plasmon Decay) were studied by collecting the back scattered light and analysing its spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum pressure reached in our experiment we performed hydro simulations with CHIC and DUED codes. The maximum shock pressure generated in our experiment at the front side of the target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was estimated to be of the order of ~ 0.1% and their mean energy in the order ~50 keV.


Proceedings of SPIE | 2011

Investigation of laser plasmas relevant to shock ignition at PALS

J. Nejdl; M. Kozlová; Magdalena Sawicka; D. Margarone; M. Krus; J. Prokupek; B Rus; D. Batani; L. Antonelli; A Patria; O. Ciricosta; C. A. Cecchetti; P. Koester; L. Labate; A Giulietti; L. A. Gizzi; A Moretti; M. Richetta; G. Schurtz; X. Ribeyre; Martine Lafon; C. Spindloe; T. O'Dell

We present the results of an experiment concerning laser-plasma interaction in the regime relevant to shock ignition. The interaction of high-intensity frequency tripled laser pulse with CH plasma preformed by lower intensity pre-pulse on fundamental wavelength of the kJ-class iodine laser was investigated in the planar geometry in order to estimate the coupling of the laser energy to the shock wave or parametric instabilities such as stimulated Raman or Brillouin scattering, or to the fast electrons. First the complete characterization of the hydrodynamic parameters of preformed plasma was made using crystal spectrometer to estimate the electron temperature and XUV probe to resolve the electron density profile close to the critical density region. The other part of the experiment consisted of the shock chronometry, calorimetry of the back-scattered light and hard X-ray spectrometry to evaluate the coupling to different processes. The preliminary analysis of the measurements showed rather low energy transfer of the high-intensity pulse to back-scattered light (< 5%) and no traces of any significant hot electron production were found in the X-ray spectra.


THE 2ND INTERNATIONAL CONFERENCE ON ULTRA‐INTENSE LASER INTERACTION SCIENCE | 2010

Proton radiography of a laser-driven cylindrical implosion

R. Jafer; L. Volpe; D. Batani; M. Koenig; S. D. Baton; E. Brambrink; F. Perez; F. Dorchies; J. J. Santos; C. Fourment; S. Hulin; Ph. Nicolaï; B. Vauzour; K. L. Lancaster; M. Galimberti; R. Heathcote; M. Tolley; Ch. Spindloe; P. Koester; L. Labate; L. A. Gizzi; C. Benedetti; A. Sgattoni; M. Richetta; J. Pasley; F. N. Beg; S. Chawla; D.P. Higginson; A. J. Mackinnon; A. McPhee

A recent experiment was performed at the Rutherford Appleton Laboratory (UK) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This experiment was performed in the framework of the experimental road map of the Hiper project (the European High Power laser Energy Research facility Project). In this experiment, protons accelerated by a pecosecond laser pulse have been used to radiograph a 220 μm‐diameter, 20 μm‐wall cylinder filled with 0.1 g/cc foam, imploded with ∼200 J of green laser light in 4 symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to measure the compression degree as well as the stagnation time. Results were compared to those from hard X‐ray radiography. Finally, Monte Carlo simulations of proton propagation in the cold and in the compressed targets allowed a detailed comparison with 2D numerical hydro simulations.


Journal of Physics: Conference Series | 2010

X-ray diagnostics of fast electrons propagation in high density plasmas obtained by cylindrical compression

B. Vauzour; M. Koenig; D. Batani; S. D. Baton; F. N. Beg; C. Benedetti; E. Brambrink; S. Chawla; F. Dorchies; C. Fourment; M. Galimberti; L. A. Gizzi; R. Heathcote; D.P. Higginson; S. Hulin; R. Jafer; P Köster; L. Labate; K. L. Lancaster; A. J. Mackinnon; A. G. MacPhee; W. Nazarov; P H Nicolaï; J. Pasley; F. Perez; X. Ribeyre; M. Richetta; J. J. Santos; G. Schurtz; A. Sgattoni

We report on X-ray diagnostics results from an experiment on fast electrons propagation in cylindrically compressed targets. It was performed on the VULCAN TAW laser facility at RAL (UK) using four long pulses (1ns, 70 J each at 2ω) to compress a cylindrical polyimide target filled with CH foam at 3 different initial densities. The cylindrical geometry allows us to reach temperatures and densities higher than those obtained in planar geometry compression. 2D hydrodynamic simulations predicted a core density range from 4 to 8 g/cm3 and a core temperature from 30 eV up to 175 eV at maximum compression. An additional short laser pulse (10 ps, 160 J at ω) was focused on a Ni foil at one of the cylinder edges in order to generate a fast electrons current propagating along the compressed target. A X-ray radiography diagnostic was implemented in order to estimate the core plasma conditions of the compressed cylinder. Moreover two Bragg X-ray spectrometers collected the Kα fluorescence from the target so as to determine the variations of fast electrons population during the compression.


international conference on plasma science | 2009

Proton radiography of a cylindrical laser-driven implosion

R. Jafer; L. Volpe; D. Batani; M. Koenig; Sd Baton; E. Bambrink; F. Perez; F. Dorchies; J. J. Santos; C. Fourment; S. Hulin; Ph. Nicolaï; B. Vauzour; K. L. Lancaster; M. Galimberti; R. Heathcote; P. Koester; L. Labate; La Gizzi; C. Benedetti; A. Sgattoni; M. Richetta; J. Pasley; F. N. Beg; S Chawla; Dp Higginson; A. J. Mackinnon; A. McPhee

A recent experiment was performed at the Rutherford Appleton Laboratory (UK) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. In this experiment, protons accelerated by a picosecond laser pulse have been used to radiograph a 220 µm diameter cylinder (10 µm wall filled with 0.1 g/cc foam), imploded with _ 200 J of green laser light in 4 symmetrically incident beams of wavelength and pulse length 1 ns. Point projection proton backlighting was used to measure the compression degree as well as the stagnation time. Results were also compared to those from a hard X-ray radiography diagnostics. Finally, Monte Carlo simulations of proton propagation in the cold and in the compressed targets allowed a detailed comparison with 2D numerical hydro simulations.

Collaboration


Dive into the M. Richetta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. A. Gizzi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

K. L. Lancaster

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Fourment

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Perez

École Polytechnique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Vauzour

University of Bordeaux

View shared research outputs
Researchain Logo
Decentralizing Knowledge