Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Rodas is active.

Publication


Featured researches published by M. Rodas.


Journal of Environmental Management | 2009

Production of lightweight aggregates from mining and industrial wastes.

Beatriz González-Corrochano; Jacinto Alonso-Azcárate; M. Rodas

Washing aggregate sludge from a gravel pit, sewage sludge from a wastewater treatment plant (WWTP) and a clay-rich sediment have been physically, chemically and mineralogically characterized. They were mixed, milled and formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150 degrees C, 1175 degrees C, 1200 degrees C and 1225 degrees C for 10 and 15 min at each temperature. The effects of the raw material characteristics, heating temperatures and dwell times on the loss on ignition (LOI), bloating index (BI), bulk density (rho(b)), apparent and dry particle densities (rho(a), rho(d)), voids (H), water absorption (WA(24h)) and compressive strength (S) were determined. All the mixtures presented a bloating potential taking into consideration the gases released at high temperatures. The products obtained were lightweight aggregates (LWAs) in accordance with Standard UNE-EN-13055-1 (rho(b)<or=1.20 g/cm(3) or particle density<or=2.00 g/cm(3)). LWAs manufactured with 50% washing aggregate sludge and 50% clay-rich sediment were expanded LWAs (BI>0) and showed the lowest apparent particle density, the lowest water absorption and the highest compressive strength. It was possible to establish three groups of LWAs on the basis of their properties in comparison to Arlita G3, F3 and F5, commercially available lightweight aggregates manufactured in Spain. Our LWAs may have the same or similar applications as these commercial products, such as horticulture, prefabricated lightweight structures and building structures.


Journal of Sedimentary Research | 2003

Sandstone Petrography of Continental Depositional Sequences of an Intraplate Rift Basin: Western Cameros Basin (North Spain)

José Arribas; Ángela Alonso; Ramón Mas; A. Tortosa; M. Rodas; José María Fernández Barrenechea; Jacinto Alonso-Azcárate; Rosana Artigas

The Cameros Basin in Central Spain is an intraplate rift basin that developed from Late Jurassic to Middle Albian time along NW–SE trending troughs. The sedimentary basin fill was deposited predominantly in continental environments and comprises several depositional sequences. These sequences consist of fluvial sandstones that commonly pass upward into lacustrine deposits at the top, producing considerable repetition of facies. This study focused on the western sector of the basin, where a total of seven depositional sequences (DS- 1 to DS-7) have been identified. The composition of sandstones permits the characterization of each sequence in terms of both clastic constituents and provenance. In addition, four main petrofacies are identified. Petrofacies A is quartzosedimentolithic (mean of Qm85F2Lt13) and records erosion of marine Jurassic pre-rift cover during deposition of fluvial deposits of DS-1 (Brezales Formation). Petrofacies B is quartzofeldspathic (mean of Qm81F14Lt5) with P/F > 1 at the base. This petrofacies was derived from the erosion of low- to medium-grade metamorphic terranes of the West Asturian–Leonese Zone of the Hesperian Massif during deposition of DS-2 (Jaramillo Formation) and DS-3 (Salcedal Formation). Quartzose sandstones characterize the top of DS-3 (mean of Qm92F4Lt4). Petrofacies C is quartzarenitic (mean of Qm95F3Lt2) with P/F > 1 and was produced by recycling of sedimentary cover (Triassic arkoses and carbonate rocks) in the SW part of the basin (DS-4, Pen˜ - acoba Formation). Finally, depositional sequences 5, 6, and 7 (Pinilla de los Moros–Hortiguela, Pantano, and Abejar–Castrillo de la Reina formations, respectively) contain petrofacies D. This petrofacies is quartzofeldspathic with P/F near zero and a very low concentration of metamorphic rock fragments (from Qm85F11Lt4 in Pantano Formation to Qm73F26Lt1 in Castrillo de la Reina Formation). Petrofacies D was generated by erosion of coarse crystalline plutonics located in the Central Iberian Zone of the Hesperian Massif. In addition to sandstone petrography, these provenance interpretations are supported by clay mineralogy of interbedded shales. Thus, shales related to petrofacies A and C have a variegated composition (illite, kaolinite, and randomly interlayered illite–smectite mixed-layer clays); the presence of chlorite characterizes interbedded shales from petrofacies B; and Illite and kaolinite are the dominant clays associated with petrofacies D. These petrofacies are consistent with the depositional sequences and their hierarchy. An early megacycle, consisting of petrofacies A and B (DS-1 to DS-3) was deposited during the initial stage of rifting, when troughs developed in the West Asturian–Leonese Zone. A second stage of rifting resulted in propagation of trough-bounding faults to the SW, involving the Central Iberian Zone as a source terrane and producing a second megacycle consisting of petrofacies C and D (DS-4, DS-5, DS-6, and DS-7). Sandstone composition has proven to be a powerful tool in basin analysis and related tectonic inferences on intraplate rift basins because of the close correlation that exists between depositional sequences and petrofacies.


Clays and Clay Minerals | 2000

CHLORITE, CORRENSITE, AND CHLORITE-MICA IN LATE JURASSIC FLUVIO-LACUSTRINE SEDIMENTS OF THE CAMEROS BASIN OF NORTHEASTERN SPAIN

José María Fernández Barrenechea; M. Rodas; M. Frey; Jacinto Alonso-Azcárate; José Ramón Mas

The distribution and crystal-chemical characteristics of chlorite, corrensite, and mica in samples from a stratigraphic profile in the Cameros basin are controlled by changes in the sedimentary facies. The lacustrine marls and limestones from the base and the top of the profile contain quartz + calcite + illite ± dolomite ± chlorite ± albite ± paragonite ± Na, K-rich mica. Chlorite is rich in Mg, with Fe/(Fe + Mg) ratios ranging between 0.18–0.37. A formation mechanism involving reaction between Mg-rich carbonate and dioctahedral phyllosilicates is proposed for these Mg-rich chlorites, on the basis of the mutually exclusive relationship found between Mg-rich chlorite and dolomite, together with the relative increase in the proportion of calcite in samples containing chlorite.The mudrocks from the middle part of the profile are composed of quartz + albite + illite + corrensite (with a mean coefficient of variability of 0.60%) ± chlorite. Corrensite and chlorite are richer in Fe2+ than those from the base or top of the profile, with mean Fe/(Fe + Mg) ratios of 0.51 and 0.56, respectively. Textural and compositional features suggest a formation mechanism for the corrensite, chlorite, and chlorite-mica crystals through replacement of detrital igneous biotite. Whether or not corrensite occurs with chlorite appears to be related to redox conditions. The presence of corrensite alone is apparently favored by oxidizing conditions, whereas the occurrence of corrensite + chlorite is related to more reducing conditions. Corrensite shows higher Si and Na + K + Ca contents, and slightly lower Fe/(Fe + Mg) ratios than chlorite. The presence of corrensite and the lack of random chlorite-smectite interlayering is discussed in terms of the fluid/rock ratio; the occurrence is related to the hydrothermal character of metamorphism in the Cameros basin.


Palaeogeography, Palaeoclimatology, Palaeoecology | 1997

Palaeogeographical significance of clay mineral assemblages in the Permian and Triassic sediments of the SE Iberian Ranges, eastern Spain

Jacinto Alonso-Azcárate; Alfredo Arche; JoséF. Barrenechea; José López-Gómez; F.Javier Luque; M. Rodas

The evolution of the palaeogeography of the SE Iberian Basin during the Permian and Triassic represents a general evolution from continental to marine environments. It has been recently studied from the sedimentological, stratigraphical, tectonic and palaeontological points of view. In spite of these results, many aspects of this palaeogeography are still a matter of discussion. In this study, clay mineralogy analysis complements previous studies representing a new aspect for understanding the evolution of the sedimentary environment and the palaeogeography of the Iberian Basin during the periods in question and thus of the palaeogeography and the location of the major high areas in the westernmost border of the Tethys sea. In spite of late diagenetic transformations the original clay mineral associations of the Permian-Triassic sediments of the SE Iberian Ranges can be reconstructed. Seventy-seven samples of siliciclastic and carbonate sediments of these ages have been studied (SEM and XRD), revealing six new aspects that help to precise the palaeogeographical interpretation of the area: (1) Two major mineral assemblages have been found: illite+ kaolinite +pyrophyllite in the continental facies and illite + chlorite + vermiculite + mixed-layer clays in the marine facies. (2) The Mg-rich clay minerals are here considered to be of marine origin. (3) Active phases of basin boundary faults are marked in the sediments by the presence of pyrophyllite, derived directly from the Palaeozoic metamorphic basement. (4) Unconformities separating major depositional sequences also separate formations with different clay mineralogy. (5) Different groups of clay minerals can be separated clearly coinciding with the different palaeogeographical stages also distinguished in the westernmost border of the Tethys sea. (6) The clay mineral associations back up the data of a previous hypothesis of a humid climate for the end of the Permian in the study area just prior to the first incursion of the Tethys sea.


Geological Magazine | 1993

Graphite geothermometry in low and high temperature regimes: two case studies

F.J. Luque; José María Fernández Barrenechea; M. Rodas

This paper examines the potential use of the variation of the c o parameter of graphite with temperature for geothermometric estimations. Two examples are presented in which graphite geothermometry, at low-and high-temperature conditions, is tested against other widely used geothermometers. The results obtained indicate that, at low-grade metamorphic conditions, the c o parameter of graphite is affected by other factors besides the temperature, so graphite geothermometry (based on c o ) can only be used in such rocks for qualitative estimations. For temperatures above 500 °C, when the fully ordered graphite appears, there is a close correlation between the temperature estimations based on the structural ordering of graphite and from mineral-exchange geothermometry. The temperature calculations based on the c o parameter of graphite are not influenced by factors (such as pressure or retrometamorphism) that clearly affect the exchange equilibria. Thus, graphite thermometry is a useful tool, for temperatures above 500 °C.


Geological Magazine | 2004

Significance of graphite occurrences in the Aracena Metamorphic Belt, Iberian Massif

E. Crespo; Javier Luque; Carlos Fernández-Rodríguez; M. Rodas; Manuel Díaz-Azpiroz; J.C. Fernández-Caliani; José María Fernández Barrenechea

The significance of syngenetic and epigenetic graphite occurrences from the Variscan high-temperature/low-pressure Aracena Metamorphic Belt is discussed in the framework of the tectono-thermal evolution of this southern zone of the Iberian Massif. Syngenetic graphite is associated with both low- to medium-grade metamorphic rocks (La Umbria series, Precambrian in age) and high-grade, granulite facies rocks (the Precambrian Fuente del Oro series and a Cambrian calc-silicate series). Epigenetic, fluid-deposited occurrences correspond to overgrowths on existing metamorphic graphite grains and vein-type mineralization. Two types of graphitized particles with remarkable differences in reflectance, anisotropy and size can be distinguished in the Precambrian metapelites of the La Umbria series. Large, >150 μm length, platy crystals with high reflectance and anisotropy are interpreted as detrital and are considered indirect evidence of an old orogenic cycle prior to the Cadomian Orogeny, during which metamorphism exceeded greenschist facies. The coexistence of two types of particles explains the scattering of values of the c parameter of graphite determined by XRD (c = 6.72–6.74 A), and the anomalously high temperatures of the DTA exothermic peak (close to 600 °C) of graphite with respect to that inferred from mineral assemblages in these rocks. The presence of graphite-rich quartzites and gneisses within the Fuente del Oro series and the calc-silicate series is evidence of sedimentation under reducing conditions in a continental shelf. The characteristics of graphite reflect the high-grade metamorphic conditions attained in the southern area of the Aracena Metamorphic Belt. Pervasive flow of fluids related to a major Variscan extensional event resulted in overgrowths on the pre-existing graphite in the gneisses and quartzites of the calc-silicate series, as evidenced by the heterogeneous isotopic composition of graphite single crystals in these rocks. A later stage of graphite precipitation is represented by scarce vein-type occurrences in mafic granulites that document channelled flow of fluids.


Mineralogical Magazine | 2006

Influence of grinding on graphite crystallinity from experimental and natural data: implications for graphite thermometry and sample preparation

E. Crespo; F.J. Luque; José María Fernández Barrenechea; M. Rodas

Abstract This paper examines the effects of shear stress on the structural parameters that define the ‘crystallinity’ of graphite. The results show that highly crystalline graphite samples ground for up to 120 min do not undergo detectable changes in the three-dimensional arrangement of carbon layers but crystallite sizes (Lc and La) decrease consistently with increasing grinding time. Grinding also involves particle-size diminution that results in lower temperatures for the beginning of combustion and exothermic maxima in the differential thermal analysis curves. These changes in the structural and thermal characteristics of graphite upon grinding must be taken into account when such data are used for geothermometric estimations. Tectonic shear stress also induces reduction of the particle size and the Lc and La values of highly crystalline graphite. Thus, the temperature of formation of graphite according to structural as well as thermal data is underestimated by up to 100°C in samples that underwent the most intense shear stress. Therefore, application of graphite geothermometry to fluid-deposited veins where graphite is the only mineral found should take into consideration the effect of tectonic shearing, or the estimated temperatures must be considered as minimum temperatures of formation only.


Clays and Clay Minerals | 2004

Formation of nontronite from oxidative dissolution of pyrite disseminated in Precambrian felsic metavolcanics of the southern Iberian Massif (Spain)

J.C. Fernández-Caliani; E. Crespo; M. Rodas; José María Fernández Barrenechea; F.J. Luque

This paper describes a rare occurrence of nontronite associated with sulfide-bearing felsic metavolcanics, providing evidence of colloidal deposition in open spaces as result of a low-temperature water-rock interaction. Microbotryoidal masses of green nontronite with impurities of kaolinite, illite, barite, amorphous silica and iron oxyhydroxides are found as vein and cavity fillings in deeply kaolinized rhyolites and rhyolitic tuffs of Precambrian age, at Oliva de Merida in SW Spain. Clay mineral characterization has been carried out by X-ray diffraction, infrared spectroscopy, thermal analysis, analytical electron microscopy and stable isotope (oxygen and hydrogen) analysis. Nontronite was formed under low-temperature alteration conditions, from a continuous sequence of reactions and aqueous solution compositions, involving two basic processes that acted in concert: oxidative dissolution of pyrite and hydrolysis of K-feldspar. After acidity neutralization, dissolved silica released by incongruent dissolution of K-feldspar reacted with ferric sulfate derived from pyrite oxidation to form nontronite under oxidizing conditions, in the presence of relatively warm meteoric water.


Mineralogical Magazine | 2000

Graphite occurrences in the low-pressure/high-temperature metamorphic belt of the Sierra de Aracena (southern Iberian Massif)

M. Rodas; F. J. Luque; José María Fernández Barrenechea; J.C. Fernández-Caliani; A. Miras; C. Fernández-Rodríguez

Abstract Four distinct associations of graphite have been identified in the low-pressure, high-temperature belt of the Sierra de Aracena (SW Spain). Syngenetic occurrences include: (1) stratiform graphite mineralization within a calc-silicate series; (2) disseminated graphite within a terrigenous sequence; and (3) ‘restitic’ graphite within anatectic tonalites and their enclaves. Epigenetic graphite occurs as (4) veins cross-cutting mafic granulites. Graphite in all types of occurrences is highly crystalline, with the c parameter close to 6.70 Å. Such c values correspond to temperatures of formation of ~800°C. The thermal properties of graphite are also typical of well-ordered graphite and provide DTA exothermic maxima ranging from 810 to 858°C depending on the mode of occurrence. The differences among the temperatures of formation estimated by graphite geothermometry, the position of the exothermic maximum in the DTA curves, and petrologic geothermometers are discussed in terms of the applicability of graphite geothermometry to granulite-facies rocks. Carbon isotope analysis yields δ13C values in the range from -31.6 to -21.4‰ for syngenetic graphite of types I, II and III attributable to biogenically-derived carbon. The heavier signatures for graphite in vein occurrences (δ13C= -17.7 to -18.3‰) with respect to syngenetic graphites suggest that isotopically heavy carbonic species were incorporated into the metamorphic fluids (probably as a consequence of decarbonation reactions of the calc-silicate rocks) from which graphite precipitated into the veins. These fluids were strongly channelled through structural pathways.


Geochimica et Cosmochimica Acta | 1999

Development and use of in situ laser sulfur isotope analyses for pyrite-anhydrite geothermometry: An example from the pyrite deposits of the Cameros Basin, NE Spain

Jacinto Alonso-Azcárate; Adrian J. Boyce; Simon H. Bottrell; Calum I. Macaulay; M. Rodas; Anthony E. Fallick; José Ramón Mas

We describe a system for the in situ sulfur isotope analysis of small (>100 μm) anhydrite crystals and investigate its application to anhydrite-pyrite geothermometry. Anhydrite inclusions (<1 mm) have been analyzed in spectacular, museum quality pyrite crystals from the Mesozoic Cameros Basin in NE Spain. Some of the data yield isotopic equilibrium temperatures (367 ± 6°C) consistent with other geothermometric estimates of metamorphic temperature. This suggests that isotopic equilibrium was established between the host pyrite and anhydrite inclusions and was not affected by re-equilibration. However, other data points yield anhydrite compositions consistently too 34S-depleted, resulting in a geologically unrealistic temperature (610 ± 20°C). Experiments show that where pyrite becomes overheated by the laser during anhydrite decomposition, solid phase reaction can incorporate pyrite-sulfur into the sampled gas in a stoichiometric fashion, therefore, the consistency of the erroneous temperature estimates from this group. Successful analyses are only obtained when overheating of the pyrite is avoided during laser decomposition of anhydrite inclusions. The laser system allows isotopic measurement of anhydrite inclusions too small to be analyzed conventionally.

Collaboration


Dive into the M. Rodas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.J. Luque

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

D. Millward

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Olivier Beyssac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

E. Crespo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alfredo Arche

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Luque

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

José Ramón Mas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

L. Ortega

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge