M.S. Andrades
University of La Rioja
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.S. Andrades.
Journal of Hazardous Materials | 2008
M.S. Rodríguez-Cruz; M.S. Andrades; M.J. Sánchez-Martín
Sorption-desorption of two different hydrophobic fungicides, penconazole and metalaxyl, by a series of clay minerals layered and non-layered (montmorillonite, illite, kaolinite, muscovite, sepiolite and palygorskite) modified with the two-chain cationic surfactant, dihexadecyldimetylammonium (DHDDMA) was studied by first time in this work. DHDDMA-clays showed a good capacity to sorb both fungicides from water. Freundlich sorption constants (K(f)) increased 22-268-fold for penconazole and 4-112-fold for metalaxyl in relation to natural clays. High sorption irreversibility was observed for penconazole for all modified clays, while for metalaxyl this occurred only for some of the modified clays. Additionally, a comparative study of the sorption of the fungicides by clay minerals modified with organic cations of different structure was carried out by a statistical approach. Non-layered and layered clay minerals modified with the two-chain alkylammonium organic cation DHDDMA, and with single-chain organic cations octadecyltrimethylammonium (ODTMA) and hexadecylpyridinium (HDPY) were used as sorbents. The study indicated a significant linear regression between the distribution coefficients K(d) of fungicides and the organic carbon (OC) content of the organo clays (r(2)>or=0.80, p<0.001). According to this sorption of fungicides by partition between the aqueous solution and the organic medium created by the alkyl chains of the exchanged ammonium cations regardless of the type and structure of these cations is suggested. However, linear relationships between K(d) values of each pesticide by the different organo clays and their relative OC contents revealed higher increase in sorption for HDPY-clays (penconazole) and for ODTMA-clays (metalaxyl) pointing out different effectiveness of the OC provided by each organic cation. These effects were also supported by the values of K(d) relative to OC, K(d)(oc). The results evidenced the different relative weight of alkyl cations to make organo clays effective barriers to prevent the mobility of pesticides from a point source of pollution.
Soil & Sediment Contamination | 2006
M.S. Rodríguez-Cruz; M.J. Sánchez-Martín; M.S. Andrades; M. Sánchez-Camazano
The objectives of this paper were to determine the efficiency of physicochemically modified soils with a surfactant in the sorption of pesticides, the stability against washing of the pesticides sorbed, and the effective sorption capacity of surfactant adsorbed by soils as a function of pesticide hydrophobicity and soil characteristics. Five soils of different characteristics and five pesticides (penconazole, linuron, alachlor, atrazine and metalaxyl) with different Kow values were selected and octadecyltrimethylammonium bromide (ODTMA) was chosen as model of cationic surfactants. Sorption-desorption isotherms were obtained and constants Kf and Kfd for natural soils (from Freundlich equation) and K and Kd for ODTMA-soils (from linear equation) were determined. Sorption on ODTMA-soils was higher than on natural soils. K increased 27–165 times for penconazole, 22–77 times for linuron, 7–14 times for alachlor, 9–23 times for atrazine, and 21–333 times for metalaxyl in relation to Kf. Sorption coefficients normalized to 100% of total organic matter (TOM) from organo soils KOM (K 100/%TOM), were always higher than those from natural soils KfOM (Kf 100/%OM), indicating that the organic matter (OM) derived from the ODTMA (OMODTMA) had a greater sorption capacity than the OM of the natural soil. KOM values were also higher than the Kow (octanol/water distribution coefficient) value for each pesticide. The similarity of the high KOM values for the sorption of each pesticide by the five soils and the linearity of isotherms point to a partitioning of the pesticides between surfactant and water. The use in this work of different soils and various pesticides, unusual in this type of investigation, allowed us to obtain equations to know the sorbed amount of a given pesticide by the surfactant-modified soils as a function of the OM content derived from the cation and the Kow of the pesticide. The results obtained are of interest when it becomes necessary to increase the sorption capacity of soils with low OM contents with a view to delaying pesticide mobility in soils from pollution point sources (high concentration in small area), and preventing the pollution of waters.
Journal of Environmental Management | 2011
Eliseo Herrero-Hernández; M.S. Andrades; M.S. Rodríguez-Cruz; M.J. Sánchez-Martín
The effect of the addition of spent mushroom substrate (SMS) to the soil as an amendment on the distribution and/or fate of copper from a copper-based fungicide applied to a vineyard soil in La Rioja (N. Spain) was studied. The study was carried out on experimental plots amended or not with SMS at rates of 40 and 100 t ha(-1). The variation in total Cu content in the topsoil (0-10 cm) and in the soil profile (0-50 cm), and the distribution of Cu in different fractions of the topsoil were studied as a function of the dose of Cu added (5 and 10 kg ha(-1)) and of the time elapsed since application (0-12 months). In addition, the changes in the chemical properties (solid organic carbon (OC), dissolved organic carbon (DOC) and pH) of the soils were studied. A greater capacity for Cu retention by the amended soils than by the unamended one was observed only when the fungicide was applied at the high dose. No effect of the amendment rate was noted on this retention capacity. The metal content in the topsoil decreased over time in step with the disappearance of the OC in the amended soil due to its oxidation, mineralization and/or leaching. This decrease in total Cu content was possibly due to the formation of soluble Cu complexes with the DOC, which facilitated its transport through the soil. A re-distribution of Cu in the different soil fractions was also observed over time, mainly from the organic to the residual fraction. The results obtained indicate that the increase in OC due to the application of SMS at the rates used does not lead to any significant increase in the persistence of Cu in the soil over time. Of greater interest would be the assessment of the risk for groundwater quality, owing to possible leaching of the fungicide enhanced by the SMS when SMS and Cu-based fungicides are jointly applied to vineyard soils.
Journal of Separation Science | 2012
Eliseo Herrero-Hernández; Eva Pose-Juan; Alba Álvarez-Martín; M.S. Andrades; M.S. Rodríguez-Cruz; M.J. Sánchez-Martín
A reliable multiresidue method based on solid phase extraction was developed using GC-MS to determine and quantify 34 pesticides, including herbicides, fungicides, insecticides, and some of their degradation products, in groundwater in a vineyard region of La Rioja (northern Spain). Different parameters were optimized and good recoveries (65-108% range) and precisions (12-19% range) were achieved with spiked water samples for a concentration of 0.1 μg/L. The experimental results showed an excellent linearity (r(2) > 0.99) over the 0.1-1.5 μg/L range. The detection limits of the proposed method were 1-37 ng/L for most of the compounds studied. The methodology has been successfully applied to the analysis of groundwater samples from vineyard areas in La Rioja and the presence of pesticides, especially fungicides and herbicides, at several concentration levels was revealed. Terbuthylazine, its metabolite desethyl-terbuthylazine, and fluometuron were the pesticides most frequently detected in higher concentrations. Overall and taking into consideration the European Union maximum residue limit of pesticides in groundwater, 16 of the 34 compounds included in this study were detected in concentrations over that limit in at least one of the samples analyzed.
Journal of Environmental Management | 2015
Eliseo Herrero-Hernández; Jesús M. Marín-Benito; M.S. Andrades; M.J. Sánchez-Martín; M.S. Rodríguez-Cruz
This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination.
Science of The Total Environment | 2013
Eliseo Herrero-Hernández; Encarnación Rodríguez-Gonzalo; M.S. Andrades; Sara Sánchez-González; Rita Carabias-Martínez
A monitoring program was developed for the environmental analysis of four phenols and three phenoxyacid herbicides in natural surface and ground water samples from the vineyard region of La Rioja (Spain). An analytical method based on molecularly imprinted solid phase extraction was developed for the determination of the impact of these compounds on the quality of environmental water samples. Different parameters were evaluated and optimized to achieve limits of detection in the 20-90 ng L(-1) range for both surface and ground water, with relative standard deviations in the 12-18% range. A comparative study of the behavior of the imprinted polymer compared with traditional sorbents (C18 and Oasis HLB) in the analysis of river water was performed. The results revealed that bisphenol-A is the most ubiquitous compound (present in more than 50% of the samples), with values up to 0.72 μg L(-1). Bisphenol-F was also detected in several samples (33% of the samples), although in concentration lower than Bisphenol-A. The herbicide 2,4-D was frequently detected in water samples (present in 33% of the samples), with concentrations above 0.1 μg L(-1) in two samples.
Applied Clay Science | 2006
M.J. Sánchez-Martín; M.S. Rodríguez-Cruz; M.S. Andrades; M. Sánchez-Camazano
Journal of Hydrology | 2013
Eliseo Herrero-Hernández; M.S. Andrades; Alba Álvarez-Martín; Eva Pose-Juan; M.S. Rodríguez-Cruz; M.J. Sánchez-Martín
Journal of Hazardous Materials | 2007
M.S. Rodríguez-Cruz; M.J. Sánchez-Martín; M.S. Andrades; M. Sánchez-Camazano
Environmental Science & Technology | 2007
Sonia Rodríguez-Cruz; M.S. Andrades; M. Sánchez-Camazano; M.J. Sánchez-Martín