Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. S. Lennard is active.

Publication


Featured researches published by M. S. Lennard.


The New England Journal of Medicine | 1982

Oxidation Phenotype — A Major Determinant of Metoprolol Metabolism and Response

M. S. Lennard; Jh Silas; Stephen Freestone; Lawrence E. Ramsay; Geoffrey T. Tucker; Hf Woods

GENETIC polymorphism in the oxidative metabolism of debrisoquine1 is largely responsible for individual differences in its plasma concentration and antihypertensive effect.2 Poor hydroxylators have...


Biochemical Pharmacology | 1997

Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes.

H. Kim Crewe; S.Wynne Ellis; M. S. Lennard; Geoffrey T. Tucker

4-Hydroxylation is an important pathway of tamoxifen metabolism because the product of this reaction is intrinsically 100 times more potent as an oestrogen receptor antagonist than is the parent drug. Although tamoxifen 4-hydroxylation is catalysed by human cytochrome P450 (CYP), data conflict on the specific isoforms responsible. The aim of this study was to define unequivocally the role of individual CYPs in the 4-hydroxylation of tamoxifen by human liver microsomes. Microsomes from each of 10 human livers catalysed the reaction [range = 0.6-2.9 pmol/mg protein/min (1 microM substrate concentration) and 6-25 pmol/mg protein/min (18 microM)]. Three of the livers with the lowest tamoxifen 4-hydroxylation activity were from genetically poor metabolisers with respect to CYP2D6. Inhibition of activity by quinidine (1 microM), sulphaphenazole (20 microM) and ketoconazole (2 microM), selective inhibitors of CYPs 2D6, 2C9 and 3A4, respectively, was 0-80%, 0-80% and 12-57%. The proportion of activity inhibited by quinidine correlated positively with total microsomal tamoxifen 4-hydroxylation activity (rs = 0.89, P < 0.01), indicating a major involvement of CYP2D6 in this reaction. Recombinant human CYPs 2D6, 2C9 and 3A4 but not CYPs 1A1, 1A2, 2C19 and 2E1 displayed significant 4-hydroxylation activity. Similar inhibition and correlation experiments confirmed that tamoxifen N-demethylation is catalysed predominantly by CYP3A4. These findings indicate that the 4-hydroxylation of tamoxifen is catalysed almost exclusively by CYPs 2D6, 2C9 and 3A4 in human liver microsomes. However, the marked between-subject variation in the contribution of these isoforms underlines the need to study metabolic reactions in a sufficient number of livers that are characterised with respect to a range of cytochrome P450 activities.


Clinical Pharmacology & Therapeutics | 1983

Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers

M. S. Lennard; Geoffrey T. Tucker; Jh Silas; Stephen Freestone; Lawrence E. Ramsay; Hf Woods

The hypothesis that variability in metoprolol metabolism stereoselectivity is related to debrisoquin oxidation phenotype was tested in six extensive (EM) and six poor (PM) debrisoquin metabolizers. In EM, plasma AUCs for (S)‐metoprolol were 35% higher than for (R)‐metoprolol, whereas in PM, AUCs for (S)‐metoprolol were lower than for (R)‐metoprolol. AUCs for total metoprolol correlated with the ratio of (S)‐ to (R)‐metoprolol AUC. The renal clearance of metoprolol was also stereoselective but to the same extent in both EM and PM. Findings suggest that the enzyme system responsible for polymorphic oxidation of the debrisoquin‐type is stereoselective. The relation between log total metoprolol plasma concentration and response (β‐blockade) was shifted to the right in PM relative to EM, which is compatible with a difference in pharmacologic activity of metoprolol enantiomers. Kinetic predictions based on total drug measurements will tend to overestimate dynamic differences between EM and PM, but the magnitude of the error is relatively small, and, in absolute terms, there is a large difference in pharmacologic activity between the phenotypes (β‐blockade at 24 hr: EM = 5.3 ± 5.6%; PM = 18.9 ± 3.8%).


Journal of Clinical Psychopharmacology | 2004

Influence of dose, cigarette smoking, age, sex, and metabolic activity on plasma clozapine concentrations: a predictive model and nomograms to aid clozapine dose adjustment and to assess compliance in individual patients.

Amin Rostami-Hodjegan; Ajmal M. Amin; Edgar P Spencer; M. S. Lennard; Geoffrey T. Tucker; Robert J. Flanagan

Abstract: The measurement of plasma clozapine concentrations is useful in assessing compliance, optimizing therapy, and minimizing toxicity. We measured plasma clozapine and norclozapine (N-desmethylclozapine) concentrations in samples from 3782 patients (2648 male, 1127 female). No clozapine was detected in 291 samples (227 patients, median prescribed dose 300 mg/d). In 4963 (50.2 %) samples (2222 patients); plasma clozapine concentration ranged from 10 to 350 ng/mL. Step-wise backward multiple regression analysis (37 % of the total samples) of log10 plasma clozapine concentration against log10 clozapine dose (mg/d), age (year), sex (male = 0, female = 1), cigarette smoking habit (nonsmokers = 0; smokers = 1), body weight (kg), and plasma clozapine/norclozapine ratio (clozapine metabolic ratio, MR) showed that these covariates explained 48% of the observed variation in plasma clozapine concentration (C = ng/mL × 10−3) (P < 0.001) according to the following equation: This model and its associated confidence intervals were used to develop nomograms of plasma clozapine concentration versus dose for male and female smokers and nonsmokers. Predicted plasma clozapine changes by +48% in nonsmokers, +17% in females, ±8% for every 0.1 change in MR (reference 1.32), ±4% for every 5 years (reference 40 years), and ±5% for every 10 kg body weight (reference 80 kg). The nomograms can be used (i) to individualize dosage to achieve a given target plasma clozapine concentration, and (ii) for quantitative evaluation of adherence by estimating the likelihood of an observed concentration being achieved by a given dosage regimen. The model has been validated against published data.


Clinical Pharmacokinectics | 1986

The Polymorphic Oxidation of β-Adrenoceptor Antagonists

M. S. Lennard; Geoffrey T. Tucker; Hf Woods

SummaryWide variability in response to some drugs such as debrisoquine can be attributed largely to genetic polymorphism of their oxidative metabolism. Mostβ-blockers undergo extensive oxidation. Anecdotal reports of high plasma concentrations of certain β-blockers in poor metabolisers (PMs) of debrisoquine have claimed that the oxidation of these drugs is under polymorphic control. Subsequently, controlled studies have shown that debrisoquine oxidation phenotype is a major determinant of the metabolism, pharmacokinetics and some of the pharmacological actions of metoprolol, bufuralol, timolol and bopindolol. The poor metaboliser phenotype is associated with increased plasma drug concentrations, a prolongation of elimination half-life and more intense and sustained β-blockade.Phenotypic differences have also been observed in the pharmacokinetics of the enantiomers of metoprolol and bufuralol. In vivo and in vitro studies have identified some of the metabolic pathways which are subject to the defect, viz. α-hydroxylation and O-de-methylation of metoprolol and 1′- and possibly 4- and 6-hydroxylation of bufuralol. In contrast, the overall pharmacokinetics and pharmacodynamics of propranolol, which is also extensively oxidised, are not related to debrisoquine polymorphism, although 4′-hydroxypropranolol formation is lower in poor metabolisers. As anticipated, the disposition of atenolol which is eliminated predominantly unchanged by the kidney and in the faeces, is unrelated to debrisoquine phenotype. The clinical significance of impaired elimination of β-blockers is not clear. If standard doses of β-blockers are used in poor metabolisers, these subjects may be susceptible to concentration-related adverse reactions and they may also require less frequent dosing for control of angina pectoris.


Biochemical Pharmacology | 1992

Catalytic activities of human debrisoquine 4-hydroxylase cytochrome P450 (CYP2D6) expressed in yeast

S.Wynne Ellis; Michael S. Ching; Philip F. Watson; Colin J. Henderson; Anthony P. Simula; M. S. Lennard; Geoffrey T. Tucker; H.Frank Woods

A 1.57kb BamH1 fragment containing a full-length human debrisoquine 4-hydroxylase cytochrome P450 (CYP2D6) cDNA was inserted into the BglII site of the yeast expression plasmid pMA91 and the resulting recombinant plasmid, PELT1, introduced into Saccharomyces cerevisiae strain AH22. Microsomes prepared from AH22/pELT1 cells gave an absorption maximum at 448 nm and a P450 content of 67 +/- 31 pmol/mg of microsomal protein. No P450 was detectable in microsomes prepared from AH22/pMA91 control cells. A western blot of microsomes prepared from yeast transformed with pELT1 were probed with a monoclonal antibody to CYP2D6 and revealed a strong band with a molecular mass consistent with that of CYP2D6 from human liver microsomes. No corresponding band was observed with microsomes from control yeast transformed with pMA91 alone. Microsomes from AH22/pELT cells showed catalytic activity towards metoprolol (alpha-hydroxylation and O-demethylation, 0.17 and 0.78 nmol/mg protein/h, respectively); and towards sparteine (2- and 5-dehydrogenation, 1.82 and 0.59 nmol/mg protein/h, respectively). The inhibition of metoprolol metabolism by quinidine (Qd) was 200 times more potent than that of quinine (Qn), both for alpha-hydroxylation (Qd IC50 = 0.05 microM; Qn IC50 = 4 microM) and O-demethylation (Qd IC50 = 0.05 microM; Qn IC50 = 4 microM). Negligible metabolism of tolbutamide and S-mephenytoin, substrates of the 2C sub-family, and of p-nitrophenol, a substrate of CYP2E1, was detected, although a trace of the N-deethylated metabolite of lignocaine, thought to be metabolised by CYP3A4, was detected with microsomes from CYP2D6-expressing yeast cells. The results indicate that yeast cells containing human CYP2D6 cDNA express a functionally active form of the enzyme, the immunochemical and catalytic properties of which are consistent with those of human liver.


Biochemical Journal | 2001

Influence of phenylalanine-481 substitutions on the catalytic activity of cytochrome P450 2D6.

Graham P. Hayhurst; J Harlow; J Chowdry; E Gross; E Hilton; M. S. Lennard; Geoffrey T. Tucker; S W Ellis

Homology models of the active site of cytochrome P450 2D6 (CYP2D6) have identified phenylalanine 481 (Phe(481)) as a putative ligand-binding residue, its aromatic side chain being potentially capable of participating in pi-pi interactions with the benzene ring of ligands. We have tested this hypothesis by replacing Phe(481) with tyrosine (Phe(481)-->Tyr), a conservative substitution, and with leucine (Phe(481)-->Leu) or glycine (Phe(481)-->Gly), two non-aromatic residues, and have compared the properties of the wild-type and mutant enzymes in microsomes prepared from yeast cells expressing the appropriate cDNA-derived protein. The Phe(481)-->Tyr substitution did not alter the kinetics [K(m) (microM) and V(max) (pmol/min per pmol) respectively] of oxidation of S-metoprolol (27; 4.60), debrisoquine (46; 2.46) or dextromethorphan (2; 8.43) relative to the respective wild-type values [S-metoprolol (26; 3.48), debrisoquine (51; 3.20) and dextromethorphan (2; 8.16)]. The binding capacities [K(s) (microM)] of a range of CYP2D6 ligands to the Phe(481)-->Tyr enzyme (S-metoprolol, 22.8; debrisoquine, 12.5; dextromethorphan, 2.3; quinidine, 0.13) were also similar to those for the wild-type enzyme (S-metoprolol, 10.9; debrisoquine, 8.9; dextromethorphan, 3.1; quinidine, 0.10). In contrast, the Phe(481)-->Leu and Phe(481)-->Gly substitutions increased significantly (3-16-fold) the K(m) values of oxidation of the three substrates [S-metoprolol (120-124 microM), debrisoquine (152-184 microM) and dextromethorphan (20-31 microM)]. Similarly, the K(s) values of the ligands to Phe(481)-->Leu and Phe(481)-->Gly mutants were also increased 3 to 10-fold (S-metoprolol, 33.2-41.9 microM; debrisoquine, 85-90 microM; dextromethorphan, 15.7-18.8 microM; quinidine 0.35-0.53 microM). However, contrary to a recent proposal that Phe(481) has the dominant role in the binding of substrates that undergo CYP2D6-mediated N-dealkylation routes of metabolism, the Phe(481)-->Gly substitution did not substantially decrease the capacity of the enzyme to N-deisopropylate metoprolol (wild-type, 1.12 pmol/min per pmol of P450; Phe(481)-->Gly, 0.71), whereas an Asp(301)-->Gly substitution decreased the N-dealkylation reaction by 95% of the wild-type rate. Overall, our results are consistent with the proposal that Phe(481) is a ligand-binding residue in the active site of CYP2D6 and that the residue interacts with ligands via a pi-pi interaction between its phenyl ring and the aromatic moiety of the ligand. However, the relative importance of Phe(481) in binding is ligand-dependent; furthermore, its importance is secondary to that of Asp(301). Finally, contrary to predictions of a recent homology model, Phe(481) does not seem to have a primary role in CYP2D6-mediated N-dealkylation.


Xenobiotica | 2000

Regioselective hydroxylation of debrisoquine by cytochrome P4502D6: implications for active site modelling

Tracy Lightfoot; S W Ellis; J. Mahling; M. J. Ackland; F. E. Blaney; G. J. Bijloo; M. J. De Groot; Npe Vermeulen; G. M. Blackburn; M. S. Lennard; Geoffrey T. Tucker

1. Debrisoquine, a prototypic probe substrate for human cytochrome P4502D6 (CYP2D6), is hydroxylated at the alicyclic C4-position by this enzyme. Phenolic metabolites of debrisoquine (5-, 6-, 7- and 8-hydroxydebrisoquine) have also been reported as in vivo metabolites, but the role of CYP2D6 in their formation is unclear. 2. As part of studies to develop a predictive model of the active site of CYP2D6 using pharmacophore and homology modelling techniques, it became important to determine the precise regioselective hydroxylation of debrisoquine by CYP2D6. 3. Data from studies with human liver microsomes and yeast microsomes containing cDNA-derived CYP2D6 demonstrated unequivocally that debrisoquine was hydroxylated by CYP2D6 at each aromatic site in the molecule, as well as at the alicyclic 4-position. The four phenolic metabolites amounted to > 60% of the total identified products and the pattern of regioselective hydroxylation (4-HD > 7-HD > 6-HD > 8-HD > 5-HD) was similar in both in vitro systems. 4. A pharmacophore model for CYP2D6 indicated that while the hydroxylation of debrisoquine at alternative positions could arise from the substrate adopting multiple binding orientations, the energy constraints for the aromatic hydroxylations were unfavourable. An alternative proposal involving essentially a single binding orientation and a mechanism of hydroxylation based on benzylic radical spin delocalization could satisfactorily rationalize all the hydroxylations of debrisoquine. 5. This latter proposal demonstrates the need to consider the mechanism of oxidation as well as the spatial orientation of the substrate in the development of a predictive model of the active site of CYP2D6.


Drug Safety | 1993

Genetically Determined Adverse Drug Reactions Involving Metabolism

M. S. Lennard

SummaryGenetic factors represent an important source of interindividual variation in drug response. Relatively few adverse drug effects with a pharmacodynamic basis are known, and most of the well characterised inherited traits take the form of genetic polymorphisms of drug metabolism. Monogenic control of N-acetylation, S-methylation and cytochrome P450-catalysed oxidation of drugs can have important clinical consequences. Individuals who inherit an impaired ability to perform one or more of these reactions may be at an increased risk of concentration-related toxicity.There is a strong case for phenotyping before starting treatment with a small number of drugs that are polymorphically N-acetylated or S-methylated. However, the issue of clinical significance is perhaps most relevant for the debrisoquine oxidation polymorphism, which is mediated by cytochrome CYP2D6 and which determines the pharmacokinetics of many commonly used drugs. Phenotypic poor metabolisers of debrisoquine (8% of Caucasian populations) taking standard doses of some tricyclic antidepressants, neuroleptics or antiarrhythmic drugs may be particularly prone to adverse reactions. Similarly, clinically relevant drug interactions between these drugs and other substrates of cytochrome CYP2D6 may occur in the majority of the population who are extensive metabolisers.However, it is clear that in the majority of cases there is a need for controlled prospective studies to determine clinical significance. Accordingly, routine debrisoquine phenotyping or genotyping before beginning drug treatment is difficult to justify at present, although it may be helpful in individual cases. When prescribing drugs whose metabolism is polymorphic alone or in combination, careful titration of the dose in both phenotypic groups is prudent. In some cases it will be preferable to use alternative therapy to avoid the risk of adverse drug reactions.


Biochemical Pharmacology | 1991

Characterization of metronidazole metabolism by human liver microsomes

Steffen Loft; Victoria Otton; M. S. Lennard; Geoffrey T. Tucker; Henrik E. Poulsen

The metabolism of metronidazole was studied in microsomes isolated from livers of human kidney donors. The formation of the major in vivo metabolite, hydroxymetronidazole, proceeded according to biphasic kinetics, suggesting the involvement of at least two enzymatic sites. The affinity constant (Km) of the high affinity site ranged from 140 to 320 microM and metabolism at this site contributed more than 75% of the intrinsic clearance. Thus, at therapeutic doses of metronidazole most of the hydroxylation in vivo should be associated with this site. Antipyrine, cimetidine, alpha-naphthoflavone, caffeine, theophylline, mephenytoin, tolbutamide, quinidine, acetone and nifedipine were poor inhibitors of the formation of hydroxymetronidazole by human liver microsomes. Propranolol (500 microM) inhibited the hydroxylation rate by 70%. Phenacetin inhibited metronidazole hydroxylation with a competitive inhibition constant (Ki) of 4-5 microM. However, metronidazole did not inhibit the O-deethylation of phenacetin. It is concluded that cytochromes P450 IA2, IIC9, IIC10, IID6, IIE1 and IIIA3 do not contribute significantly to the high affinity hydroxylation of metronidazole in man.

Collaboration


Dive into the M. S. Lennard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hf Woods

Royal Hallamshire Hospital

View shared research outputs
Top Co-Authors

Avatar

S W Ellis

Royal Hallamshire Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter R. Jackson

Royal Hallamshire Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H.K. Crewe

Royal Hallamshire Hospital

View shared research outputs
Top Co-Authors

Avatar

Jh Silas

Royal Hallamshire Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge