Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. S. Tillack is active.

Publication


Featured researches published by M. S. Tillack.


Journal of Applied Physics | 2003

Internal structure and expansion dynamics of laser ablation plumes into ambient gases

S. S. Harilal; C. V. Bindhu; M. S. Tillack; F. Najmabadi; A. C. Gaeris

The effect of ambient gas on the expansion dynamics of the plasma generated by laser ablation of an aluminum target has been investigated using frequency doubled radiation from a Q-switched Nd:YAG laser. The diagnostic tools include fast photography of overall visible plume emission using a 2 ns gated intensified charged coupled device and space and time resolved emission spectroscopy using a 50 cm monochromator/spectrograph and photomultiplier tube. The expansion behavior of the plasma was studied with ambient air pressure ranging from 10−6 to 100 Torr. Free expansion, plume splitting and sharpening, hydrodynamic instability, and stagnation of the plume were observed at different pressure levels. Space and time resolved emission spectroscopic studies showed a twin peak distribution for Al and Al+ species at farther distances illustrating plume splitting at pressures higher than 100 mTorr. Combining imaging together with time resolved emission diagnostics, a triple structure of the plume was observed. The...


Fusion Engineering and Design | 2001

On the exploration of innovative concepts for fusion chamber technology

Mohamed A. Abdou; Alice Ying; Neil B. Morley; K. Gulec; Sergey Smolentsev; M. Kotschenreuther; S. Malang; S.J. Zinkle; Thomas D. Rognlien; P.J. Fogarty; B. Nelson; R.E. Nygren; K.A. McCarthy; M.Z. Youssef; Nasr M. Ghoniem; D.K. Sze; C.P.C. Wong; M.E. Sawan; H.Y. Khater; R. Woolley; R.F. Mattas; Ralph W. Moir; S. Sharafat; J.N. Brooks; A. Hassanein; David A. Petti; M. S. Tillack; M. Ulrickson; Tetsuya Uchimoto

Abstract This study, called APEX, is exploring novel concepts for fusion chamber technology that can substantially improve the attractiveness of fusion energy systems. The emphasis of the study is on fundamental understanding and advancing the underlying engineering sciences, integration of the physics and engineering requirements, and enhancing innovation for the chamber technology components surrounding the plasma. The chamber technology goals in APEX include: (1) high power density capability with neutron wall load >10 MW/m 2 and surface heat flux >2 MW/m 2 , (2) high power conversion efficiency (>40%), (3) high availability, and (4) simple technological and material constraints. Two classes of innovative concepts have emerged that offer great promise and deserve further research and development. The first class seeks to eliminate the solid “bare” first wall by flowing liquids facing the plasma. This liquid wall idea evolved during the APEX study into a number of concepts based on: (a) using liquid metals (Li or Sn–Li) or a molten salt (Flibe) as the working liquid, (b) utilizing electromagnetic, inertial and/or other types of forces to restrain the liquid against a backing wall and control the hydrodynamic flow configurations, and (c) employing a thin (∼2 cm) or thick (∼40 cm) liquid layer to remove the surface heat flux and attenuate the neutrons. These liquid wall concepts have some common features but also have widely different issues and merits. Some of the attractive features of liquid walls include the potential for: (1) high power density capability; (2) higher plasma β and stable physics regimes if liquid metals are used; (3) increased disruption survivability; (4) reduced volume of radioactive waste; (5) reduced radiation damage in structural materials; and (6) higher availability. Analyses show that not all of these potential advantages may be realized simultaneously in a single concept. However, the realization of only a subset of these advantages will result in remarkable progress toward attractive fusion energy systems. Of the many scientific and engineering issues for liquid walls, the most important are: (1) plasma–liquid interactions including both plasma–liquid surface and liquid wall–bulk plasma interactions; (2) hydrodynamic flow configuration control in complex geometries including penetrations; and (3) heat transfer at free surface and temperature control. The second class of concepts focuses on ideas for extending the capabilities, particularly the power density and operating temperature limits, of solid first walls. The most promising idea, called EVOLVE, is based on the use of a high-temperature refractory alloy (e.g. W–5% Re) with an innovative cooling scheme based on the use of the heat of vaporization of lithium. Calculations show that an evaporative system with Li at ∼1 200°C can remove the goal heat loads and result in a high power conversion efficiency. The vapor operating pressure is low, resulting in a very low operating stress in the structure. In addition, the lithium flow rate is about a factor of ten lower than that required for traditional self-cooled first wall/blanket concepts. Therefore, insulator coatings are not required. Key issues for EVOLVE include: (1) two-phase heat transfer and transport including MHD effects; (2) feasibility of fabricating entire blanket segments of W alloys; and (3) the effect of neutron irradiation on W.


Physics of Plasmas | 2001

Transport by intermittent convection in the boundary of the DIII-D tokamak

Jose Armando Boedo; D. Rudakov; R.A. Moyer; S. I. Krasheninnikov; D.G. Whyte; G. R. McKee; G. R. Tynan; M. Schaffer; P. Stangeby; P. West; S. Allen; T. Evans; R. J. Fonck; E.M. Hollmann; Anthony William Leonard; A. Mahdavi; G. Porter; M. S. Tillack; G. Y. Antar

Intermittent plasma objects (IPOs) featuring higher pressure than the surrounding plasma, and responsible for ∼50% of the E×BT radial transport, are observed in the scrape off layer (SOL) and edge of the DIII-D tokamak [J. Watkins et al., Rev. Sci. Instrum. 63, 4728 (1992)]. Conditional averaging reveals that the IPOs, produced at a rate of ∼3×103 s−1, are positively charged and also polarized, featuring poloidal electric fields of up to 4000 V/m. The IPOs move poloidally at speeds of up to 5000 m/s and radially with E×BT/B2 velocities of ∼2600 m/s near the last closed flux surface (LCFS), and ∼330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The IPOs appear in the SOL of both L and H mode discharges and are responsible for nearly 50% of the SOL radial E×B transport at all radii; however, they are highly reduced in absolute amplitude in H-mode conditions.


Fusion Engineering and Design | 2001

Design and material issues for high performance SiCf/SiC-based fusion power cores

A.R. Raffray; R. H. Jones; G Aiello; M.C. Billone; L Giancarli; H Golfier; Akira Hasegawa; Y. Katoh; Akira Kohyama; S Nishio; B Riccardi; M. S. Tillack

The SiCf/SiC composite is a promising structural material candidate for fusion power cores and has been considered internationally in several power plant studies. It offers safety advantages arising from its low induced radioactivity and afterheat, and the possibility of high performance through high temperature operation. However, its behavior and performance at high temperatures and under irradiation are still not well known and need to be better characterized. This paper summarizes the current SiCf/SiC design and R&D status. The latest SiCf/SiC-based power core design studies are summarized, and the key SiCf/SiC parameters affecting the performance of power core components are highlighted. The current status of the material R&D is discussed, with the focus on fabrication and joining, baseline properties and properties under irradiation, as well as the desirable evolution of these properties. In the light of this, the R&D plans are summarized and assessed. Finally, to help present-day design studies and in the expectation of future confirmatory R&D results, recommendations are provided on SiCf/SiC parameters and properties to be assumed for present design analysis of long term SiCf/SiC-based power plants.


Fusion Engineering and Design | 1997

Overview of the ARIES-RS reversed-shear tokamak power plant study

F. Najmabadi; C.G. Bathke; M.C. Billone; James P. Blanchard; Leslie Bromberg; Edward Chin; Fredrick R Cole; Jeffrey A. Crowell; D.A. Ehst; L. El-Guebaly; J. Stephen Herring; T.Q. Hua; Stephen C. Jardin; Charles Kessel; H.Y. Khater; V.Dennis Lee; S. Malang; T.K. Mau; R.L. Miller; E.A. Mogahed; Thomas W. Petrie; Elmer E Reis; J.H. Schultz; M. Sidorov; D. Steiner; I.N. Sviatoslavsky; D.K. Sze; Robert Thayer; M. S. Tillack; Peter H. Titus

The ARIES-RS tokamak is a conceptual, D‐T-burning 1000 MWe power plant. As with earlier ARIES design studies, the final design of ARIES-RS was obtained in a self-consistent manner using the best available physics and engineering models. Detailed analyses of individual systems together with system interfaces and interactions were incorporated into the ARIES systems code in order to assure self-consistency and to optimize towards the lowest cost system. The ARIES-RS design operates with a reversed-shear plasma and employs a moderate aspect ratio (A4.0). The plasma current is relatively low (Ip11.32 MA) and bootstrap current fraction is high ( fBC 0.88). Consequently, the auxiliary power required for RF current drive is relatively low ( 80 MW). At the same time, the average


Journal of Applied Physics | 2005

Spectroscopic characterization of laser-induced tin plasma

S. S. Harilal; Beau O’Shay; M. S. Tillack; Manoj V. Mathew

Optical emission spectroscopic studies have been carried out on a tin plasma generated using 1064-nm, 8-ns pulses from a Nd:yttrium aluminum garnet laser. Temperature and density were estimated from the analysis of spectral data. The temperature measurements have been performed by Boltzmann diagram method using singly ionized Sn lines, while density measurements were made using the Stark broadening method. An initial temperature of 3.2 eV and density of 7.7×1017cm−3 were measured. Temporal and spatial behaviors of electron temperature and density in the laser-generated tin plasma have been analyzed. Time evolutions of density and temperature are found to decay adiabatically at early times. The spatial variation of density shows approximately 1∕z dependence. The time-integrated temperature exhibits an appreciable rise at distances greater than 7 mm. This may be caused by the deviation from local thermodynamic equilibrium at larger distances from the target surface.


Journal of Applied Physics | 2006

Ambient gas effects on the dynamics of laser-produced tin plume expansion

S. S. Harilal; Beau O’Shay; Y. Tao; M. S. Tillack

Controlling the debris from a laser-generated tin plume is one of the prime issues in the development of an extreme ultraviolet lithographic light source. An ambient gas that is transparent to 13.5nm radiation can be used for controlling highly energetic particles from the tin plume. We employed a partial ambient argon pressure for decelerating various species in the tin plume. The kinetic energy distributions of tin species were analyzed at short and large distances using time and space resolved optical emission spectroscopy and a Faraday cup, respectively. A fast-gated intensified charged coupled device was used for understanding the hydrodynamics of the plume’s expansion into argon ambient. Our results indicate that the tin ions can be effectively mitigated with a partial argon pressure ∼65mTorr. Apart from thermalization and deceleration of plume species, the addition of ambient gas leads to other events such as double peak formation in the temporal distributions and ambient plasma formation.


Journal of Physics D | 2002

Plume splitting and sharpening in laser-produced aluminium plasma

S. S. Harilal; C. V. Bindhu; M. S. Tillack; F. Najmabadi; A. C. Gaeris

Plume splitting and sharpening were observed in laser-produced aluminium plasma created using 532 nm, 8 ns pulses from a frequency doubled Nd : YAG laser. Measurements were made using 2 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The motion of the leading edge of the plume was studied with several background air pressures and the expansion of the plume front was compared with various expansion models. Combining imaging together with time resolved emission diagnostics, a triple structure of the plume was observed.


Nanotechnology | 2004

The effect of ionization on cluster formation in laser ablation plumes

M. S. Tillack; D W Blair; S. S. Harilal

Ablation plumes caused by short-pulse laser irradiation provide conditions which are well suited to the formation of nanoclusters. The high saturation ratios and presence of ionization lead to extraordinarily high nucleation rates and small critical radii. We have explored the homogeneous nucleation and heterogeneous growth of condensates from Si targets expanding into a low-pressure He ambient using a Nd:YAG laser with a pulse length of 8 ns, wavelength of 532 nm and intensities in the range of 5 × 107–5 × 109 W cm−2. Clusters in the range of 5–50 nm have been produced. In the highly dynamic, non-linear regime of short-pulse laser–matter interactions, plume evolution and condensation processes are strongly coupled and difficult to predict accurately from modelling alone. Both numerical predictions and experimental results were used to quantify the competing effects of ionization and supersaturation. The results suggest a dominant influence of ionization for nearly all intensities above the ablation threshold.


ieee npss symposium on fusion engineering | 1997

High performance PbLi blanket

M. S. Tillack; S. Malang

A novel blanket concept is described. The proposed design Is a dual coolant concept based on ferritic steel as structural material using helium to cool the first wall. The temperature of the entire steel structure is maintained below the 550/spl deg/C limit. The breeding zone is cooled by circulating the liquid metal breeder to external heat exchangers. Flow channel inserts are employed in the poloidal liquid breeder ducts, serving both as electrical and thermal insulator between the flowing liquid metal and the steel structure. In this way, a liquid metal exit temperature of about 700/spl deg/C is achievable, allowing either an advanced Rankine steam cycle or closed-cycle helium gas turbine (Brayton cycle) as the power conversion system. A gross thermal efficiency of about 45% can be achieved with either system.

Collaboration


Dive into the M. S. Tillack's collaboration.

Top Co-Authors

Avatar

F. Najmabadi

University of California

View shared research outputs
Top Co-Authors

Avatar

S. Malang

University of California

View shared research outputs
Top Co-Authors

Avatar

X. R. Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Y. Tao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.R. Raffray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.K. Sze

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Yuspeh

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge