Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Sabrina Pankey is active.

Publication


Featured researches published by M. Sabrina Pankey.


Ecology Letters | 2015

Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism

Emily I. Jones; Michelle E. Afkhami; Erol Akçay; Judith L. Bronstein; Redouan Bshary; Megan E. Frederickson; Katy D. Heath; Jason D. Hoeksema; J. H. Ness; M. Sabrina Pankey; Stephanie S. Porter; Joel L. Sachs; Klara Scharnagl; Maren L. Friesen

Cheating is a focal concept in the study of mutualism, with the majority of researchers considering cheating to be both prevalent and highly damaging. However, current definitions of cheating do not reliably capture the evolutionary threat that has been a central motivation for the study of cheating. We describe the development of the cheating concept and distill a relative-fitness-based definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that cheaters will spread and erode the benefits of mutualism. We then describe experiments required to conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we discuss how our definition and methods can generate comparability and integration of theory and experiments, which are currently divided by their respective prioritisations of fitness consequences and traits. To evaluate the current empirical evidence for cheating, we review the literature on several of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters. Finally, we highlight future directions for research on conflict in mutualisms, including novel research avenues opened by a relative-fitness-based definition of cheating.


BMC Evolutionary Biology | 2010

Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach

Ajna S. Rivera; M. Sabrina Pankey; David C. Plachetzki; Carlos Villacorta; Anna E. Syme; Jeanne M. Serb; Angela R. Omilian; Todd H. Oakley

BackgroundDuplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes.ResultsUsing protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms did not co-duplicate more often than expected by chance.ConclusionsOverall, and when accounting for factors such as differential rates of whole-genome duplication in different groups, our results are broadly consistent with the hypothesis that genes involved in eye development and phototransduction duplicate at a higher rate in Pancrustacea, the group with the greatest variety of optical designs. The result that these genes have a significantly high number of co-duplications and co-losses could be influenced by shared functions or other unstudied factors such as synteny. Since we did not observe co-duplication/co-loss of genes for all known functional modules (e.g. specific regulatory networks), the interactions among suites of known co-functioning genes (modules) may be plastic at the temporal scale of analysis performed here. Other factors in addition to gene duplication - such as cis-regulation, heterotopy, and co-option - are also likely to be strong factors in the diversification of eye types.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid

M. Sabrina Pankey; Vladimir N. Minin; Greg C. Imholte; Marc A. Suchard; Todd H. Oakley

Significance Unless there are strong constraints, the probability of complex organs originating multiple times through similar trajectories should be vanishingly small. Here, we report that similar light-producing organs (photophores) evolved separately in two squid species, yet each organ expresses similar genes at comparable levels. Gene expression is so similar that overall expression levels alone can predict organ identity, even in separately evolved traits of squid species separated by tens of millions of years. The striking similarity of expression of hundreds of genes in distinct photophores indicates complex trait evolution may sometimes be more constrained and predictable than expected, either because of internal factors, like a limited array of suitable genetic building blocks, or external factors, like natural selection favoring an optimum. Despite contingency in life’s history, the similarity of evolutionarily convergent traits may represent predictable solutions to common conditions. However, the extent to which overall gene expression levels (transcriptomes) underlying convergent traits are themselves convergent remains largely unexplored. Here, we show strong statistical support for convergent evolutionary origins and massively parallel evolution of the entire transcriptomes in symbiotic bioluminescent organs (bacterial photophores) from two divergent squid species. The gene expression similarities are so strong that regression models of one species’ photophore can predict organ identity of a distantly related photophore from gene expression levels alone. Our results point to widespread parallel changes in gene expression evolution associated with convergent origins of complex organs. Therefore, predictable solutions may drive not only the evolution of novel, complex organs but also the evolution of overall gene expression levels that underlie them.


Visual Neuroscience | 2011

Understanding the dermal light sense in the context of integrative photoreceptor cell biology.

M. Desmond Ramirez; Daniel I. Speiser; M. Sabrina Pankey; Todd H. Oakley

While the concept of a dermal light sense has existed for over a century, little progress has been made in our understanding of the mechanisms underlying dispersed photoreception and the evolutionary histories of dispersed photoreceptor cells. These cells historically have been difficult to locate and positively identify, but modern molecular techniques, integrated with existing behavioral, morphological, and physiological data, will make cell identification easier and allow us to address questions of mechanism and evolution. With this in mind, we propose a new classification scheme for all photoreceptor cell types based on two axes, cell distribution (aggregated vs. dispersed) and position within neural networks (first order vs. high order). All photoreceptor cells fall within one of four quadrants created by these axes: aggregated/high order, dispersed/high order, aggregated/first order, or dispersed/first order. This new method of organization will help researchers make objective comparisons between different photoreceptor cell types. Using integrative data from four major phyla (Mollusca, Cnidaria, Echinodermata, and Arthropoda), we also provide evidence for three hypotheses for dispersed photoreceptor cell function and evolution. First, aside from echinoderms, we find that animals often use dispersed photoreceptor cells for tasks that do not require spatial vision. Second, although there are both echinoderm and arthropod exceptions, we find that dispersed photoreceptor cells generally lack morphological specializations that either enhance light gathering or aid in the collection of directional information about light. Third, we find that dispersed photoreceptor cells have evolved a number of times in Metazoa and that most dispersed photoreceptor cells have likely evolved through the co-option of existing phototransduction cascades. Our new classification scheme, combined with modern investigative techniques, will help us address these hypotheses in great detail and generate new hypothesis regarding the function and evolution of dispersed photoreceptor cells.


BMC Bioinformatics | 2014

Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms

Daniel I. Speiser; M. Sabrina Pankey; Alexander K. Zaharoff; Barbara A Battelle; Heather D. Bracken-Grissom; Jesse W. Breinholt; Seth M. Bybee; Thomas W. Cronin; Anders Garm; Annie R. Lindgren; Nipam H. Patel; Megan L. Porter; Meredith E. Protas; Ajna S. Rivera; Jeanne M. Serb; Kirk S. Zigler; Keith A. Crandall; Todd H. Oakley

BackgroundTools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families.ResultsWe generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/).ConclusionsOur new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.


BMC Bioinformatics | 2014

Osiris: accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system

Todd H. Oakley; Markos A. Alexandrou; Roger Ngo; M. Sabrina Pankey; Celia K. C. Churchill; William Chen; Karl B Lopker

BackgroundPhylogenetic tools and ‘tree-thinking’ approaches increasingly permeate all biological research. At the same time, phylogenetic data sets are expanding at breakneck pace, facilitated by increasingly economical sequencing technologies. Therefore, there is an urgent need for accessible, modular, and sharable tools for phylogenetic analysis.ResultsWe developed a suite of wrappers for new and existing phylogenetics tools for the Galaxy workflow management system that we call Osiris. Osiris and Galaxy provide a sharable, standardized, modular user interface, and the ability to easily create complex workflows using a graphical interface. Osiris enables all aspects of phylogenetic analysis within Galaxy, including de novo assembly of high throughput sequencing reads, ortholog identification, multiple sequence alignment, concatenation, phylogenetic tree estimation, and post-tree comparative analysis. The open source files are available on in the Bitbucket public repository and many of the tools are demonstrated on a public web server (http://galaxy-dev.cnsi.ucsb.edu/osiris/).ConclusionsOsiris can serve as a foundation for other phylogenomic and phylogenetic tool development within the Galaxy platform.


Proceedings of the Royal Society B: Biological Sciences | 2017

Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution

Alastair R. Tanner; Dirk Fuchs; Inger E. Winkelmann; Marcus Thomas Pius Gilbert; M. Sabrina Pankey; Angela Ribeiro; Kevin M. Kocot; Kenneth M. Halanych; Todd H. Oakley; Rute R. da Fonseca; Davide Pisani; Jakob Vinther

Coleoid cephalopod molluscs comprise squid, cuttlefish and octopuses, and represent nearly the entire diversity of modern cephalopods. Sophisticated adaptations such as the use of colour for camouflage and communication, jet propulsion and the ink sac highlight the unique nature of the group. Despite these striking adaptations, there are clear parallels in ecology between coleoids and bony fishes. The coleoid fossil record is limited, however, hindering confident analysis of the tempo and pattern of their evolution. Here we use a molecular dataset (180 genes, approx. 36 000 amino acids) of 26 cephalopod species to explore the phylogeny and timing of cephalopod evolution. We show that crown cephalopods diverged in the Silurian–Devonian, while crown coleoids had origins in the latest Palaeozoic. While the deep-sea vampire squid and dumbo octopuses have ancient origins extending to the Early Mesozoic Era, 242 ± 38 Ma, incirrate octopuses and the decabrachian coleoids (10-armed squid) diversified in the Jurassic Period. These divergence estimates highlight the modern diversity of coleoid cephalopods emerging in the Mesozoic Marine Revolution, a period that also witnessed the radiation of most ray-finned fish groups in addition to several other marine vertebrates. This suggests that that the origin of modern cephalopod biodiversity was contingent on ecological competition with marine vertebrates.


Evolution: Education and Outreach | 2008

Opening the “Black Box”: The Genetic and Biochemical Basis of Eye Evolution

Todd H. Oakley; M. Sabrina Pankey

Eyes provide a rich narrative for understanding evolution, having attracted the attention of preeminent scientists and communicators alike. Until recently, this narrative has focused primarily on the evolution of eye structure and far less on biochemistry or genetics. Although eye biochemistry was once likened to an unknown “black box;” the flood of discoveries in biochemistry is now allowing an increasingly detailed understanding of the processes involved in vision. As a result, evolutionary comparative (“tree-thinking”) analyses that use these data currently allow a new and still unfolding narrative, both richer in detail and more comprehensive in scope. Rather than toppling evolutionary theory by finding irreducibly complex molecular machines, eye evolution provides detailed accounts of how natural processes tinker with existing genetic components, duplicating and recombining them, to yield complex, intricate, and highly functional eyes. Understanding the new biochemical narrative is critical for researchers and teachers alike, in order to answer anti-evolutionist claims, and to provide an up-to-date account of the state of knowledge on the subject of eye evolution.


Hydrobiologia | 2014

Lights out: the evolution of bacterial bioluminescence in Loliginidae

Frank E. Anderson; Alexis M. Bergman; Samantha H. Cheng; M. Sabrina Pankey; Tooraj Valinassab

Representatives of several metazoan clades engage in symbiotic interactions with bioluminescent bacteria, but the evolution and maintenance of these interactions remain poorly understood. Uroteuthis is a genus of loliginid squid (Cephalopoda: Loliginidae) characterized by paired ventral photophores (light organs) housing bioluminescent bacteria. While previous phylogenetic studies have suggested that Uroteuthis is closely related to Loliolus, a genus of non-bioluminescent species, this relationship remains unresolved. To illuminate Uroteuthis and Loliolus phylogeny and its implications for the evolution of bioluminescence in Loliginidae, we generated sequences from two mitochondrial genes from Uroteuthis specimens sampled from several sites in the Indian and western Pacific Oceans. We combined these data with data from GenBank, analyzed the concatenated data set using maximum likelihood and Bayesian methods, and reconstructed the evolution of bacterial bioluminescence on the resulting phylogenies. Our analyses support the hypothesis that Uroteuthis is paraphyletic with respect to Loliolus. Furthermore, our reconstructions suggest that the symbiosis between loliginid squid and bioluminescent bacteria evolved once in the ancestor of Loliolini (the clade comprising Uroteuthis and Loliolus), but was subsequently lost in the ancestor of Loliolus. These findings could have profound implications for our understanding of the evolution of symbiotic bioluminescence in squid.


Functional Ecology | 2017

Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod

Morgan W. Kelly; M. Sabrina Pankey; Melissa B. DeBiasse; David C. Plachetzki

Summary 1.Organisms may respond to changing environments through phenotypic plasticity or adaptive evolution. These two processes are not mutually exclusive, and may either dampen or strengthen each others effects, depending on the genetic correlation between trait values and the slopes of their norms of reaction. 2.To examine the effect of adaptation to heat stress on the plasticity of heat tolerance we hybridized populations of the crustacean Tigriopus californicus that show divergent phenotypes for heat tolerance. We then selected for increased heat tolerance in hybrids and measured heat tolerance and the phenotypic plasticity of heat tolerance in both selected lines and unselected controls. 3.To test whether changes in phenotypic plasticity were associated with changes in the plasticity of gene expression, we also sequenced transcriptomes of selected and unselected lines, both under heat shock and at ambient temperatures. 4.We observed increased heat tolerance in selected lines, but also lower phenotypic and transcriptional plasticity in response to heat stress. The plastic response to heat stress was highly enriched for hydrolytic and catalytic activities, suggesting a prominent role for degradation of mis-folded proteins. 5.Our findings have important implications for biological responses to climate change: if adaptation to environmental stress reduces plasticity, then plasticity and adaptive evolution will make overlapping, rather than additive contributions to buffering populations from environmental change. This article is protected by copyright. All rights reserved.

Collaboration


Dive into the M. Sabrina Pankey's collaboration.

Top Co-Authors

Avatar

Todd H. Oakley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen M. Morrow

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Michael P. Lesser

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Aki Ohdera

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Daniel I. Speiser

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge