M. Santonicola
University of Twente
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Santonicola.
Colloids and Surfaces B: Biointerfaces | 2013
Peter Manfred Schön; E. Kutnyanszky; S.F.P. ten Donkelaar; M. Santonicola; T. Tecim; Nick Aldred; Anthony S. Clare; Gyula J. Vancso
The protein repellency and biofouling resistance of zwitterionic poly(sulfobetaine methacrylate)(pSBMA) brushes grafted via surface initiated polymerization (SIP) from silicon and glass substrata was assessed using atomic force microscopy (AFM) adherence experiments. Laboratory settlement assays were conducted with cypris larvae of the barnacle Balanus amphitrite. AFM adherence includes the determination of contact rupture forces when AFM probe tips are withdrawn from the substratum. When the surface of the AFM tip is modified, adherence can be assessed with chemical specifity using a method known as chemical force microscopy (CFM). In this study, AFM tips were chemically functionalized with (a) fibronectin- here used as model for a nonspecifically adhering protein - and (b) arginine-glycine-aspartic acid (RGD) peptide motifs covalently attached to poly(methacrylic acid) (PMAA) brushes as biomimics of cellular adhesion receptors. Fibronectin functionalized tips showed significantly reduced nonspecific adhesion to pSBMA-modified substrata compared to bare gold (2.3±0.75 nN) and octadecanethiol (ODT) self-assembled monolayers (1.3±0.75 nN). PMAA and PMAA-RGD modified probes showed no significant adhesion to pSBMA modified silicon substrata. The results gathered through AFM protein adherence studies were complemented by laboratory fouling studies, which showed no adhesion of cypris larvae of Balanus amphitrite on pSBMA. With regard to its unusually high non-specific adsorption to a wide variety of materials the behavior of fibronectin is analogous to the barnacle cyprid temporary adhesive that also binds well to surfaces differing in polarity, charge and free energy. The antifouling efficacy of pSBMA may, therefore, be directly related to the ability of this surface to resist nonspecific protein adsorption.
European Cells & Materials | 2013
A. Paciello; A. M. Cusano; M. Santonicola
European Cells & Materials | 2013
E. Vaselli; M. Santonicola
Dutch Polymer Days, DPD 2012 | 2012
G.W. de Groot; M. Santonicola; Gyula J. Vancso
Archive | 2011
G.W. de Groot; M. Santonicola; Gyula J. Vancso
Archive | 2011
E. Kutnyanszky; Peter Manfred Schön; M. Santonicola; T. Tecim; B. Donkelaar; Nick Aldred; Gyula J. Vancso
NWO Scientific meeting on Chemistry related to Physics & Material Sciences / Dutch Polymer Days 2011 | 2011
G.W. de Groot; M. Santonicola; Gyula J. Vancso
ESF-EMBO Symposium on Biological Surfaces and Interfaces | 2011
G.W. de Groot; M. Santonicola; Gyula J. Vancso
25th International Symposium on Polymer Analysis and Characterization (ISPAC 2012) | 2011
E. Kutnyanszky; Peter Manfred Schön; M. Santonicola; Gyula J. Vancso
Archive | 2010
G.W. de Groot; M. Santonicola; Gyula J. Vancso