Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Santostefano is active.

Publication


Featured researches published by M. Santostefano.


Archives of Biochemistry and Biophysics | 1992

Mechanism of action of aryl hydrocarbon receptor antagonists: inhibition of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 gene expression.

M. Merchant; V. Morrison; M. Santostefano; Stephen Safe

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 gene expression as determined by increased CYP1A1 mRNA levels and ethoxyresorufin O-deethylase (EROD) activity in mouse Hepa 1c1c7, rat hepatoma H-4II E and human Hep G2 cancer cell lines. In contrast, treatment of these cell lines with either alpha-naphthoflavone (alpha NF) or 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) at concentrations as high as 10(-6) M resulted in only minimal induction of CYP1A1 mRNA levels or EROD activity. Cotreatment of the cells with 10(-9) M TCDD plus different concentrations (10(-8)-10(-6) M) of MCDF or alpha NF resulted in a concentration-dependent decrease in TCDD-induced CYP1A1 mRNA levels and EROD activity in the three cell lines. Moreover, using 10(-9) M [3H]TCDD, it was shown that the alpha NF- and MCDF-mediated antagonism of TCDD-induced CYP1A1 gene expression was paralleled by a decrease in levels of the nuclear [3H]TCDD-Ah receptor complex as determined by velocity sedimentation analysis of the nuclear extracts. The binding of nuclear extracts from the treated cells to a synthetic consensus dioxin responsive element (DRE) (a 26-mer) was determined by gel retardation studies using 32P-DRE. In cells treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M alpha NF, the concentration-dependent decrease in TCDD-induced CYP1A1 gene expression by alpha NF was also paralleled by decreased levels of a retarded band associated with the nuclear Ah receptor-DRE complex. In contrast, the results of the gel shift assay of nuclear extracts treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M MCDF indicated that there were relatively high levels of nuclear MCDF-Ah receptor complex in the cells co-treated with TCDD plus the antagonist but this was not accompanied by induced CYP1A1 gene expression. The results suggest that alpha NF and possibly MCDF compete with TCDD for cytosolic Ah receptor binding sites; however, MCDF may also inhibit the induction response by competing for and/or partially inactivating genomic binding sites.


Chemico-Biological Interactions | 1993

Synergistic activity of polynuclear aromatic hydrocarbon mixtures as aryl hydrocarbon (Ah) receptor agonists

Kathy Chaloupka; N. Harper; V. Krishnan; M. Santostefano; Lewis V. Rodriguez; Stephen Safe

The relative potencies of benzo[a]pyrene and a complex mixture of polynuclear aromatic hydrocarbons (PAHs) produced as by-products of manufactured gas plant (MGP) residues as inducers of hepatic microsomal ethoxyresorufin O-deethylase (EROD) activity were determined in the B6C3F1 mouse. The ED50 values for the induction response were 78 and 65 mg/kg for benzo[a]pyrene and the MGP-PAH mixture, respectively. Analysis of the MGP-PAH mixture indicated that benzo[a]pyrene and other compounds containing four or more rings and which are known to induce EROD activity were only present as trace components of this mixture. A comparison of the EROD induction potencies of benzo[a]pyrene and the MGP-PAH mixture showed that the mixture was approximately 706 times more potent than expected based on its benzo[a]pyrene content (0.17%). This induced P-450 activity could significantly increase the metabolism of the carcinogenic PAHs and thereby modulate the overall carcinogenicity of the mixture. The apparent synergistic activity of the MGP-PAH mixture was further investigated by comparing the activities of this mixture and benzo[a]pyrene for several other aryl hydrocarbon (Ah) receptor-mediated responses including (i) induction of hepatic CYP1A1 mRNA levels, (ii) transformation of the rat cytosolic Ah receptor to a complex which binds to a dioxin responsive element, (iii) induction of EROD activity and (iv) antiestrogenicity in MCF-7 human breast cancer cells, and (v) inhibition of the splenic plaque-forming cell (PFC) response to both T cell-dependent and independent antigens in B6C3F1 mice. For the EROD and CYP1A1 mRNA induction and cytosolic transformation activities and immunosuppressive effects, the MGP-PAH mixture was approximately 100-900 times more potent as an Ah receptor agonist than expected based on its benzo[a]pyrene content. The synergistic activity was lower (19-fold) for the antiestrogenic response in MCF-7 cells. The reason for the synergistic effects of the MGP-PAH mixture were not due to contamination of the mixture by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds and the results suggest that the enhanced potency of the mixture is due to unknown interactions between the individual PAHs present in the mixture.


Chemico-Biological Interactions | 1995

Induction of Cyp1a-1 and Cyp1a-2 gene expression by a reconstituted mixture of polynuclear aromatic hydrocarbons in B6C3F1 mice

Kathy Chaloupka; Michael Steinberg; M. Santostefano; Lewis V. Rodriguez; Lawrence S.B. Goldstein; Stephen Safe

The potential non-additive interactions of polynuclear aromatic hydrocarbon (PAH) mixtures as inducers of Cyp1a-1 and Cyp1a-2 gene expression were investigated in B6C3F1 mice using a reconstituted PAH mixture. The chemical composition (% by weight) of the reconstituted PAH mixture was: 2-ring PAHs--indan (0.22), naphthalene (23.8), 2-methylnaphthalene (23.2) and 1-methylnaphthalene (13.3); 3-ring PAHs--acenaphthylene (7.7), acenaphthene (0.6), dibenzofuran (0.7), fluorene (4.3), phenanthrene (10.5) and anthracene (3.4); > or = 4-ring PAHs--fluoranthene (2.4), pyrene (4.3), benz[a]anthracene (1.4), chrysene (1.5), benzo[b]fluoranthene (0.8), benzo[k]fluoranthene (0.9) and benzo[a]pyrene (0.9). The composition of the 2-, 3- and > or = 4-ring PAH fractions were based on the relative concentration of individual PAHs as noted above. The > or = 4-ring PAH fractions were based on the relative concentration of individual PAHs as noted above. The > or = 4-ring PAH fraction and reconstituted mixture induced hepatic microsomal ethoxyresorufin O-deethylase (EROD) activity and Cyp1a-1 mRNA levels, whereas the 2- and 3-ring PAHs were only weakly active. Direct comparison of the potencies of the reconstituted mixture and > or = 4-ring PAHs showed that the Cyp1a-1 induction activity of the reconstituted mixture was due to the > or = 4-ring PAHs. The reconstituted PAH mixture and > or = 4-ring PAHs also induced Cyp1a-2 hepatic mRNA levels and microsomal methoxyresorufin O-deethylase (MROD) activity; however, their dose-response curves indicated that the reconstituted PAH mixture was more potent as a Cyp1a-2 inducer than the > or = 4 ring PAHs. The differences in potency were due to 3-ring PAHs which were found to be strong inducers of hepatic Cyp1a-2 mRNA levels and microsomal MROD activity at the lowest dose administered (37 mg/kg). The 3-ring mixture caused a maximal 29-fold increase in hepatic MROD activity at a dose of 292 mg/kg, but only 28% of maximal induction of EROD activity. Northern analysis of liver mRNA from mice treated with 3-ring PAHs showed that there was minimal induction of Cyp1a-1 mRNA levels. The 3-ring PAHs did not competitively bind to the mouse hepatic cytosolic aryl hydrocarbon (Ah) receptor suggesting that 3-ring PAHs are a new class of Cyp1a-2 inducers which do not act through the Ah receptor.


European Journal of Pharmacology: Environmental Toxicology and Pharmacology | 1995

Comparative properties of the nuclear aryl hydrocarbon (Ah) receptor complex from several human cell lines

Xiaohong Wang; Jane Thomsen; M. Santostefano; R. Rosengren; Stephen Safe; Gary H. Perdew

The aryl hydrocarbon (Ah) responsiveness of the T-47D, Hep G2, LS180, MCF-7, A431, C-4II and MDA-MB-231 human cancer cell lines was determined by the induction of CYP1A1 mRNA levels and ethoxyresorufin O-deethylase activity. With the exception of teh MDA-MB-231 breast cancer cell line, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly induced CYP1A1 mRNA levels and ethoxyresorufin O-deethylase activity in the remaining six cell lines and, based on their EC50 values, for ethoxyresorufin O-deethylase induction, their Ah responsiveness followed the order T-47D > C-4II > MCF-7 > LS180 > HEP G2 > A431. In contrast, all the cell lines expressed the nuclear Ah receptor complex (167.1-24.5 fmol/mg protein) which bound to a 32P-labeled consensus dioxin responsive element (DRE) in a gel mobility shift assay. The results of gel permeation chromatography a sucrose density gradient centrifugation studies showed that the calculated Mr values for the nuclear Ah receptor complex varied from 175 kDa (MDA-MB-231 cells) to 221 kDa and the apparent molecular weight of the nuclear Ah receptor complex cross-linked to a bromodeoxyuridine-substituted DRE was 200 kDa. The data show that the molecular properties and levels of the nuclear Ah receptor complex from seven different human cancer cell lines do not predict Ah responsiveness.


Archives of Biochemistry and Biophysics | 1992

Effects of ligand structure on the in vitro transformation of the rat cytosolic aryl hydrocarbon receptor

M. Santostefano; J. Piskorska-Pliszczynska; V. Morrison; Stephen Safe

Incubation of radiolabeled, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF),1,2,3,7,8-pentachlorodibenzo-p-dioxin(PeCDD), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF), 1,2,7,8-TCDF, and 2,3,7-trichlorodibenzo-p-dioxin (TrCDD) with rat hepatic cytosol for 2 h at 0 degrees C gave liganded aryl hydrocarbon (Ah) receptor complexes which were indistinguishable as determined by velocity sedimentation analysis and DNA-Sepharose column chromatography. Incubation of the cytosol plus the different radioligands for 2 h at 20 degrees C resulted in the formation of Ah receptor complexes which exhibited increased retention times on DNA-Sepharose columns. It was apparent that the amount of specifically bound Ah receptor complex or the levels of the transformed Ah receptor complex which eluted from the column with 0.2-0.3 M salt were dependent on the structure of the radioligand. For example, after incubation for 2 h at 20 degrees C the overall yields of the specifically bound transformed Ah receptor complex were 3.4, 2.0, 1.2, 1.9, 0.3, and 0.1%, respectively, using 2,3,7,8-TCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 1,2,7,8-TCDF, and 2,3,7,8-TrCDD as radioligands. A more quantitative measure of the structure-dependent transformation of the liganded cytosolic Ah receptor complex was determined using a gel retardation assay with a consensus synthetic dioxin-responsive element (DRE) (26-mer, duplex). The EC50 values obtained for the concentration-dependent formation of the retarded DRE-Ah receptor complex using 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 2,3,7-TrCDD, and 1,2,7,8-TCDF as ligands were 0.26, 0.35, 0.78, 1.75, 27.0, and 220 nM, respectively. The structure-dependent differences in these values were similar to their different potencies as Ah receptor agonists and these data suggest that the structure-dependent transformation of the liganded cytosolic Ah receptor may significantly contribute to the structure-activity relationships observed for 2,3,7,8-TCDD and related compounds.


Biochemical Pharmacology | 1992

Characterization of the aryl hydrocarbon receptor in the human C-4II cervical squamous carcinoma cell line

Wang Xiaohong; R. Rosengren; V. Morrison; M. Santostefano; Stephen Safe

Treatment of C-4II human cervical squamous carcinoma cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) gave a concentration-dependent increase in ethoxyresorufin O-deethylase (EROD) activity. The EC50 for this response was approximately 1 nM and the maximum induced activity was 27 pmol/min/mg protein. The molecular properties of the cytosolic and nuclear aryl hydrocarbon (Ah) receptor complex were determined by velocity sedimentation analysis, photoaffinity labeling, gel retardation using a consensus dioxin responsive element (DRE), and DNA-Sepharose, DRE-Sepharose and Sephacryl S-300 gel permeation column chromatography. The apparent molecular masses of the cytosolic and nuclear photoaffinity-labeled Ah receptor complexes were 110 kDa and differed from the corresponding values obtained for the Ah receptor from other animal species. In contrast, most of the other molecular properties of the Ah receptor were not significantly different from those previously reported for other species. The relative Ah-responsiveness of the C-4II cells was assessed by determining the ratio of the induced EROD activity/nuclear Ah receptor levels for a submaximal inducing dose of [3H]TCDD. The induced activity/binding ratio for the human C-4II cells was 0.77 and was at least one order of magnitude lower than the corresponding value for the Ah-responsive rat hepatoma H-4-II E cells.


Chemico-Biological Interactions | 1996

Characterization of the molecular and structural properties of the transformed and nuclear aryl hydrocarbon (Ah) receptor complexes by proteolytic digestion.

M. Santostefano; Stephen Safe

Ligand-dependent differences in the molecular properties of the transformed cytosolic and nuclear aryl hydrocarbon receptor (AhR) were investigated using the proteolytic clipping band shift assay. AhR complexes were incubated with [32P]dioxin responsive element (DRE) (26-mer) or bromodeoxyuridine (BrdU)-DRE and the resulting protein-DNA or crosslinked protein-DNA complexes were treated with trypsin or V8 protease and analyzed by electrophoresis. The results showed that for several different AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran, 1,2,7,8-tetrachlorodibenzofuran and alpha-naphthoflavone, the pattern of degraded protein-DNA products were similar using transformed cytosolic or nuclear AhR complexes. In contrast, the proteolytic clipping band shift assay showed that there were significant differences in the pattern of degraded protein-DNA products using nuclear AhR complexes derived from mouse Hepa 1c1c7 cells treated with TCDD or 6-methyl-1,3,8-trichlorodibenzofuran (MCDF). The differences detected in this in vitro assay parallel the in vivo and in vitro activities of these compounds in which TCDD is a potent AhR agonist whereas MCDF is a partial AhR agonist and antagonist.


Chemico-Biological Interactions | 1992

A comparison of the mouse versus human aryl hydrocarbon (Ah) receptor complex: Effects of proteolysis

X. Wang; M. Santostefano; Yu-Fang Lu; Stephen Safe

The differences in the molecular properties of the nuclear aryl hydrocarbon (Ah) receptor from human Hep G2 and mouse Hepa 1c1c7 cells were investigated by time-dependent partial proteolysis with chymotrypsin or trypsin followed by column chromatographic and velocity sedimentation analysis. The sedimentation coefficients, Stokes radii and apparent molecular weights of the untreated human and mouse Ah receptor complexes were similar. Treatment of the nuclear Ah receptor complexes from both cell lines with chymotrypsin for 10 or 60 min gave lower molecular weight proteolytic products which also exhibited comparable molecular properties and salt gradient elution profiles from Sepharose columns linked to DNA. Treatment of the human and mouse nuclear Ah receptor complexes with trypsin (5 micrograms/mg protein) for 10 or 60 min gave a minor low molecular weight (29.7- or 25.7-kDa) proteolysis product which was detected only with the mouse Hepa 1c1c7 Ah receptor complex. The time- and concentration-dependent proteolytic digest maps of the human and mouse Ah receptor were determined using receptor preparations which were photoaffinity labeled with [125I]7-iodo-2, 3-dibromodibenzo-p-dioxin. The human Ah receptor was significantly more resistant to proteolysis by trypsin or chymotrypsin than the mouse Ah receptor. At a low concentration of chymotrypsin (1 microgram/mg protein) the Hepa 1c1c7 receptor was degraded to two lower molecular weight fragments with apparent M(r) values at 71- and 48-kDa whereas the Hep G2 Ah receptor was relatively stable under these conditions. Although the human Ah receptor was more slowly hydrolyzed than the mouse receptor by trypsin, the major photolabeled breakdown products for the Ah receptor from both cell lines were observed at M(r) 48- and 45-kDa. The results of this study demonstrate that there were subtle but significant differences in the human and mouse Ah receptor complex; however, the proteolysis studies suggest that there are common structural features in their ligand binding sites.


Polycyclic Aromatic Compounds | 1994

Enhanced Activity of Polynuclear Aromatic Hydrocarbon Mixtures as aryl Hydrocarbon (Ah) Receptor Agonists

Kathy Chaloupka; N. Harper; V. Krishnan; Michael Steinberg; M. Santostefano; Stephen Safe; James E. Womack; Lewis V. Rodriguez; Harold A. Dunsford; Lawrence S.B. Goldstein

Abstract The relative potencies of benzo[a]pyrene and a complex mixture of polycyclic aromatic hydrocarbons (PAH) produced as by-products of manufactured gas plant (MGP) residues as inducers of hepatic microsomal ethoxyresorufin O-deethylase (EROD) were determined in the B6C3F1 mouse. The ED50 values for the induction response were 78 and 65 mg/kg for benzo[a]pyrene and the MGP-PAH mixture, respectively, although benzo[a]pyrene and other compounds containing four or more rings were only trace components of this mixture. A comparison of the EROD induction potencies of benzo[a]pyrene and the MGP-PAH mixture showed that the mixture was approximately 706 times more active than expected based on its benzo[a]pyrene content (0.17%). The enhanced activity of the MGP-PAH mixture was also observed for several other aryl hydrocarbon (Ah) receptor-mediated responses, including inhibition of the splenic plaque-forming cell (PFC) response to both T-cell-dependent and independent antigens in B6C3F1 mice. The nature of t...


Molecular and Cellular Biology | 1995

Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells.

V. Krishnan; Weston Porter; M. Santostefano; Xiaohong Wang; Stephen Safe

Collaboration


Dive into the M. Santostefano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Lewis V. Rodriguez

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge