Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Sasaki is active.

Publication


Featured researches published by M. Sasaki.


Physical Review Letters | 2000

Precision Measurement of Cosmic-Ray Antiproton Spectrum

S. Orito; T. Maeno; H. Matsunaga; K. Abe; K. Anraku; Y. Asaoka; M. Fujikawa; M. Imori; M. Ishino; Y. Makida; N. Matsui; H. Matsumoto; John W. Mitchell; T. Mitsui; A. Moiseev; M. Motoki; J. Nishimura; Mitsuaki Nozaki; J. F. Ormes; T. Saeki; T. Sanuki; M. Sasaki; E. S. Seo; Y. Shikaze; T. Sonoda; R. E. Streitmatter; J. Suzuki; Kazunobu Tanaka; I. Ueda; N. Yajima

The energy spectrum of cosmic-ray antiprotons ( &pmacr;s) has been measured in the range 0.18-3.56 GeV, based on 458 &pmacr;s collected by BESS in a recent solar-minimum period. We have detected for the first time a characteristic peak at 2 GeV of &pmacr;s originating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS data with still higher statistics will allow us to study the solar modulation and the propagation in detail and to search for primary &pmacr; components.


Physical Review Letters | 2005

Search for Cosmic-Ray Antideuterons

H. Fuke; T. Maeno; K. Abe; S. Haino; Y. Makida; S. Matsuda; H. Matsumoto; J. W. Mitchell; A. Moiseev; J. Nishimura; Mitsuaki Nozaki; S. Orito; J. F. Ormes; M. Sasaki; E. S. Seo; Y. Shikaze; R. E. Streitmatter; J. Suzuki; K. Tanaka; K. Tanizaki; T. Yamagami; A. Yamamoto; Yoshihisa Yamamoto; K. Yamato; T. Yoshida; K. Yoshimura

We performed a search for cosmic-ray antideuterons using data collected during four BESS balloon flights from 1997 to 2000. No candidate was found. We derived, for the first time, an upper limit of 1.9 x 10(-4) (m2s sr GeV/nucleon)(-1) for the differential flux of cosmic-ray antideuterons, at the 95% confidence level, between 0.17 and 1.15 GeV/nucleon at the top of the atmosphere.


The Astrophysical Journal | 2002

Measurement of Cosmic-Ray Hydrogen and Helium and Their Isotopic Composition with the BESS Experiment

J. Z. Wang; E. S. Seo; K. Anraku; M. Fujikawa; M. Imori; T. Maeno; N. Matsui; H. Matsunaga; M. Motoki; S. Orito; T. Saeki; T. Sanuki; I. Ueda; K. Yoshimura; Y. Makida; J. Suzuki; K. Tanaka; Akira Yamamoto; T. Yoshida; T. Mitsui; H. Matsumoto; Mitsuaki Nozaki; M. Sasaki; J. W. Mitchell; A. Moiseev; J.F. Ormes; R. E. Streitmatter; J. Nishimura; Y. Yajima; T. Yamagami

The cosmic-ray hydrogen and helium spectra have been measured by the Balloon Borne Experiment with a Superconducting Solenoid Spectrometer (BESS), which has been flown from Lynn Lake, Manitoba, Canada, annually since 1993. The BESS experiment provides excellent rigidity measurement and precise particle identification with a large geometric acceptance. We present here the hydrogen and helium nuclei energy spectra from 0.2 to 10 GeV nucleon-1 and their isotopic composition from 0.2 to about 1 GeV nucleon-1 for the first BESS flight. This provides the first simultaneous measurements of the cosmic-ray secondaries, deuterons, and 3He, with their primaries, protons, and 4He over this energy range in a period of solar minimum. In this paper, we have achieved significant improvements in data analysis in the following aspects. First, the latest available cross-section data and their parameterizations were utilized in the simulation code developed for this study. Second, a complete simulation was performed for both protons and heavy ions: the δ-ray effect was properly simulated and showed a large influence on the measurement of heavy ions at high energies. Third, the secondary particle correction, which dominates the systematic uncertainty at low energies for singly charged particles, protons and deuterons, was calculated iteratively with the simultaneously measured primary cosmic-ray spectra. In general, the results of this experiment are consistent with other recent measurements using balloon-borne or satellite experiments, but with better precision. The measured spectra of protons, deuterons, 3He, and 4He and their corresponding ratios are compared with different interstellar/heliospheric propagation calculations, which were derived to fit observations of heavy nuclei. The overall good agreement indicates that the propagation history for light cosmic-ray elements, protons, deuterons, and helium nuclei is similar to that of the heavy nuclei. The 2H/1H ratio is sensitive to the propagation models, and our results show a tendency of better agreement with the reacceleration model than the standard leaky-box model.


Physics Letters B | 2008

Measurement of the cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight

K. Abe; H. Fuke; S. Haino; T. Hams; A. Itazaki; K. C. Kim; T. Kumazawa; M.H. Lee; Y. Makida; S. Matsuda; K. Matsumoto; John W. Mitchell; A. Moiseev; Z. Myers; J. Nishimura; Mitsuaki Nozaki; R. Orito; J. F. Ormes; M. Sasaki; E. S. Seo; Y. Shikaze; R. E. Streitmatter; J. Suzuki; Y. Takasugi; K. Takeuchi; K. Tanaka; T. Yamagami; A. Yamamoto; T. Yoshida; K. Yoshimura

Abstract The BESS-Polar spectrometer had its first successful balloon flight over Antarctica in December 2004. During the 8.5-day long-duration flight, almost 0.9 billion events were recorded and 1,520 antiprotons were detected in the energy range 0.1–4.2 GeV. In this Letter, we report the antiproton spectrum obtained, discuss the origin of cosmic-ray antiprotons, and use antiproton data to probe the effect of charge-sign-dependent drift in the solar modulation.


Physical Review Letters | 2012

Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over Antarctica

K. Abe; H. Fuke; S. Haino; T. Hams; M. Hasegawa; A. Horikoshi; K. C. Kim; A. Kusumoto; M.H. Lee; Y. Makida; S. Matsuda; Y. Matsukawa; J. W. Mitchell; J. Nishimura; Mitsuaki Nozaki; R. Orito; J. F. Ormes; Kenichi Sakai; M. Sasaki; E. S. Seo; R. Shinoda; R. E. Streitmatter; J. Suzuki; Kazunobu Tanaka; N. Thakur; T. Yamagami; A. Yamamoto; T. Yoshida; K. Yoshimura

The energy spectrum of cosmic-ray antiprotons (ps) from 0.17 to 3.5 GeV has been measured using 7886 ps detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p calculations. Cosmologically primary ps have been investigated by comparing measured and calculated p spectra. BESS-Polar II data show no evidence of primary ps from the evaporation of primordial black holes.


Astroparticle Physics | 2003

Precise measurements of atmospheric muon fluxes with the BESS spectrometer

M. Motoki; T. Sanuki; S. Orito; K. Abe; K. Anraku; Y. Asaoka; M. Fujikawa; H. Fuke; S. Haino; M. Imori; K. Izumi; T. Maeno; Y. Makida; N. Matsui; H. Matsumoto; H. Matsunaga; John W. Mitchell; T. Mitsui; A. Moiseev; J. Nishimura; Mitsuaki Nozaki; J. F. Ormes; T. Saeki; M. Sasaki; E. S. Seo; Y. Shikaze; T. Sonoda; R.E. Streitmatter; J. Suzuki; K. Tanaka

The vertical absolute fluxes of atmospheric muons and muon charge ratio have been measured precisely at different geomagnetic locations by using the BESS spectrometer. The observations had been performed at sea level (30 m above sea level) in Tsukuba, Japan, and at 360 m above sea level in Lynn Lake, Canada. The vertical cutoff rigidities in Tsukuba (36.2°N, 140.1°E) and in Lynn Lake (56.5°N, 101.0°W) are 11.4 and 0.4 GV, respectively. We have obtained vertical fluxes of positive and negative muons in a momentum range from 0.6 to 20 GeV/c with systematic errors <3% in both measurements. By comparing the data collected at two different geomagnetic latitudes, we have seen an effect of cutoff rigidity. The dependence on the atmospheric pressure and temperature, and the solar modulation effect have been also clearly observed. We also clearly observed the decrease of charge ratio of muons at low momentum side with at higher cutoff rigidity region.


Physical Review Letters | 2012

Search for Antihelium with the BESS-Polar Spectrometer

K. Abe; H. Fuke; S. Haino; T. Hams; M. Hasegawa; A. Horikoshi; A. Itazaki; K. C. Kim; T. Kumazawa; A. Kusumoto; M.H. Lee; Y. Makida; S. Matsuda; Y. Matsukawa; K. Matsumoto; John W. Mitchell; Z. Myers; J. Nishimura; Mitsuaki Nozaki; R. Orito; J. F. Ormes; Kenichi Sakai; M. Sasaki; E. S. Seo; Y. Shikaze; R. Shinoda; R. E. Streitmatter; J. Suzuki; Y. Takasugi; Kengo Takeuchi

In two long-duration balloon flights over Antarctica, the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) collaboration has searched for antihelium in the cosmic radiation with the highest sensitivity reported. BESS-Polar I flew in 2004, observing for 8.5 days. BESS-Polar II flew in 2007-2008, observing for 24.5 days. No antihelium candidate was found in BESS-Polar I data among 8.4×10(6) |Z|=2 nuclei from 1.0 to 20 GV or in BESS-Polar II data among 4.0×10(7) |Z|=2 nuclei from 1.0 to 14 GV. Assuming antihelium to have the same spectral shape as helium, a 95% confidence upper limit to the possible abundance of antihelium relative to helium of 6.9×10(-8)} was determined combining all BESS data, including the two BESS-Polar flights. With no assumed antihelium spectrum and a weighted average of the lowest antihelium efficiencies for each flight, an upper limit of 1.0×10(-7) from 1.6 to 14 GV was determined for the combined BESS-Polar data. Under both antihelium spectral assumptions, these are the lowest limits obtained to date.


The Astrophysical Journal | 2016

Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antarctica

K. Abe; H. Fuke; S. Haino; T. Hams; M. Hasegawa; A. Horikoshi; A. Itazaki; K. C. Kim; T. Kumazawa; A. Kusumoto; M.H. Lee; Y. Makida; S. Matsuda; Y. Matsukawa; K. Matsumoto; J. W. Mitchell; Z. Myers; J. Nishimura; Mitsuaki Nozaki; R. Orito; J. F. Ormes; N. Picot-Clemente; Kazuhiro Sakai; M. Sasaki; E. S. Seo; Y. Shikaze; R. Shinoda; R. E. Streitmatter; J. Suzuki; Y. Takasugi

The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.


Physics Reports | 2016

Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons

T. Aramaki; S. E. Boggs; S. Bufalino; Lars A. Dal; P. von Doetinchem; F. Donato; N. Fornengo; H. Fuke; M. Grefe; Charles J. Hailey; B. Hamilton; Alejandro Ibarra; J. Mitchell; Isaac Mognet; R. A. Ong; R. Pereira; K. Perez; A. Putze; Are Raklev; P. Salati; M. Sasaki; G. Tarle; Alfredo Urbano; Andrea Vittino; Sebastian Wild; Wei Xue; K. Yoshimura

Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earths geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.


arXiv: Instrumentation and Methods for Astrophysics | 2014

Design and Performance of the X-ray Polarimeter X-Calibur

M. Beilicke; F. Kislat; A. Zajczyk; Q. Guo; Ryan Endsley; M. Stork; R. Cowsik; P. F. Dowkontt; S. D. Barthelmy; T. Hams; Takashi Okajima; M. Sasaki; B. Zeiger; G. De Geronimo; Matthew G. Baring; H. Krawczynski

X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X-ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCuS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a CZT detector assembly to measure the polarization of 20-80keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ~80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2-100keV energy band.

Collaboration


Dive into the M. Sasaki's collaboration.

Top Co-Authors

Avatar

H. Fuke

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Hams

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge