M. Schädel
Japan Atomic Energy Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Schädel.
Nature | 2002
Ch. E. Düllmann; W. Brüchle; R. Dressler; K. Eberhardt; B. Eichler; R. Eichler; H. W. Gäggeler; Thomas Nelson Ginter; F. Glaus; Kenneth E. Gregorich; Darleane C. Hoffman; E. Jäger; D. T. Jost; U. W. Kirbach; Diana Lee; Heino Nitsche; J. B. Patin; Valeria Pershina; D. Piguet; Z. H. Qin; M. Schädel; B. Schausten; E. Schimpf; H. J. Schött; S. Soverna; R. Sudowe; P. Thörle; S. N. Timokhin; N. Trautmann; A. Türler
The periodic table provides a classification of the chemical properties of the elements. But for the heaviest elements, the transactinides, this role of the periodic table reaches its limits because increasingly strong relativistic effects on the valence electron shells can induce deviations from known trends in chemical properties. In the case of the first two transactinides, elements 104 and 105, relativistic effects do indeed influence their chemical properties, whereas elements 106 and 107 both behave as expected from their position within the periodic table. Here we report the chemical separation and characterization of only seven detected atoms of element 108 (hassium, Hs), which were generated as isotopes 269Hs (refs 8, 9) and 270Hs (ref. 10) in the fusion reaction between 26Mg and 248Cm. The hassium atoms are immediately oxidized to a highly volatile oxide, presumably HsO4, for which we determine an enthalpy of adsorption on our detector surface that is comparable to the adsorption enthalpy determined under identical conditions for the osmium oxide OsO4. These results provide evidence that the chemical properties of hassium and its lighter homologue osmium are similar, thus confirming that hassium exhibits properties as expected from its position in group 8 of the periodic table.
Acta Physica Polonica B | 2003
M. Schädel; Dawn Shaughnessy
Synthesis of Super heavy Elements.- Nuclear Structure of Super heavy Elements.- Theoretical Chemistry of the Heaviest Elements.- Fundamental and Experimental Aspects of Single Atom-at-a-Time Chemistry.- Experimental Techniques.- Liquid-Phase Chemistry of Super heavy Elements.- Thermochemical Data from Gas-Phase Adsorption and Methods of their Estimation.- Gas-Phase Chemistry of Super heavy Elements.- Historical Reminiscences: The Pioneering Years of Super heavy Element Research.
Nature | 1997
M. Schädel; W. Brüchle; R. Dressler; B. Eichler; H. W. Gäggeler; R. Günther; Kenneth E. Gregorich; Darleane C. Hoffman; S. Hübener; D.T. Jost; J. V. Kratz; W. Paulus; D. Schumann; S. N. Timokhin; N. Trautmann; A. Türler; G. Wirth; A. Yakuschev
The synthesis, via nuclear fusion reactions, of elements heavier than the actinides, allows one to probe the limits of the periodic table as a means of classifying the elements. In particular, deviations in the periodicity of chemical properties for the heaviest elements are predicted as a consequence of increasingly strong relativistic effects on the electronic shell structure. The transactinide elements have now been extended up to element 112 (ref. 8), but the chemical properties have been investigated only for the first two of the transactinide elements, 104 and 105 (refs 9,10,11,12,13,14,15,16,17,18,19). Those studies showed that relativistic effect render these two elements chemically different from their lighter homologues in the same columns of the periodic table (Fig. 1). Here we report the chemical separation of element 106 (seaborgium, Sg) and investigations of its chemical behaviour in the gas phase and in aqueous solution. The methods that we use are able to probe the reactivity of individual atoms, and based on the detection of just seven atoms of seaborgium we find that it exhibits properties characteristic of the group 6 homologues molybdenum and tungsten. Thus seaborgium appears to restore the trends of the periodic table disrupted by relativistic effects in elements 104 and 105.
Radiochimica Acta | 1989
M. Schädel; W. Brüchle; Egon Jäger; E. Schimpf; J. V. Kratz; U. W. Scherer; H. P. Zimmermann
The microcomputer controlled Automated Rapid Chemistry Apparatus, ARCA, is described in its newly designed version for the study of chemical properties of element 105 in aqueous solutions. This improved version, ARCA II, is adapted to the needs of fast and repetitive separations to be carried out in a chemically inert automated micro high performance liquid chromatography system. As an example, the separation of several group HIB, IVB, and VB elements in the system triisooctylamine/hydrochloric acid within 30 s is demonstrated. Furthermore, a new method for the fast preparation of samples for α-particle spectroscopy by evaporation of the aqueous effluent with an intense light source is presented.
Nature | 2015
T. K. Sato; M. Asai; A. Borschevsky; T. Stora; N. Sato; Y. Kaneya; K. Tsukada; Ch. E. Düllmann; K. Eberhardt; E. Eliav; S. Ichikawa; U. Kaldor; J. V. Kratz; Sunao Miyashita; Y. Nagame; K. Ooe; A. Osa; D. Renisch; J. Runke; M. Schädel; P. Thörle-Pospiech; A. Toyoshima; N. Trautmann
The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row—including the actinides—even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is electronvolts. The IP1 of Lr was measured with 256Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.
Inorganic Chemistry | 2014
A. Yakushev; J. M. Gates; A. Türler; M. Schädel; Christoph E. Düllmann; D. Ackermann; Lise-Lotte Andersson; Michael Block; W. Brüchle; Jan Dvorak; K. Eberhardt; H. G. Essel; J. Even; Ulrika Forsberg; A. Gorshkov; R. Graeger; Kenneth E. Gregorich; Willi Hartmann; R.-D. Herzberg; F. P. Heßberger; D. Hild; A. Hübner; Egon Jäger; J. Khuyagbaatar; B. Kindler; Jens Volker Kratz; J. Krier; N. Kurz; B. Lommel; L. Niewisch
The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Experimental gas-solid chromatography studies on Cn have, indeed, revealed a metal-metal bond formation with Au. In contrast to this, for Fl, the formation of a weak bond upon physisorption on a Au surface was inferred from first experiments. Here, we report on a gas-solid chromatography study of the adsorption of Fl on a Au surface. Fl was produced in the nuclear fusion reaction (244)Pu((48)Ca, 3-4n)(288,289)Fl and was isolated in-flight from the primary (48)Ca beam in a physical recoil separator. The adsorption behavior of Fl, its nuclear α-decay product Cn, their lighter homologues in groups 14 and 12, i.e., Pb and Hg, and the noble gas Rn were studied simultaneously by isothermal gas chromatography and thermochromatography. Two Fl atoms were detected. They adsorbed on a Au surface at room temperature in the first, isothermal part, but not as readily as Pb and Hg. The observed adsorption behavior of Fl points to a higher inertness compared to its nearest homologue in the group, Pb. However, the measured lower limit for the adsorption enthalpy of Fl on a Au surface points to the formation of a metal-metal bond of Fl with Au. Fl is the least reactive element in the group, but still a metal.
Nuclear Physics | 1989
H. W. Gäggeler; D.T. Jost; A. Türler; P. Armbruster; W. Brüchle; H. Folger; F. P. Heßberger; S. Hofmann; G. Münzenberg; V. Ninov; W. Reisdorf; M. Schädel; K. Sümmerer; Jens Volker Kratz; U. W. Scherer; M. E. Leino
Abstract Fusion reactions of 48 Ca projectiles with 180 Hf, 184 W, 197 Au, 208 Pb and 209 Bi targets were studied. Highest cross sections were found in the 208 Pb( 48 Ca,2n) 254 No channel with σ max 3.2 ± 0.3 μb. The results of the heavier systems are discussed in terms of the extra — push model. For the lighter systems missing cross section is observed if compared to estimates made by the evaporation code HIVAP.
Radiochimica Acta | 1997
M. Schädel; W. Brüchle; B. Schausten; E. Schimpf; E. Jager; G. Wirth; R. Günther; J. V. Kratz; W. Paulus; A. Seibert; P. Thörle; N. Trautmann; S. Zauner; D. Schumann; M. Andrassy; R. Misiak; K. E. Gregorich; Darleane C. Hoffman; D. M. Lee; E. R. Sylwester; Y. Nagame; Y. Oura
For the first time, chemical separations of element 106 (Seaborgium, Sg) were performed in aqueous solutions. The isotopes Sg and Sg were produced in the Cm + Ne reaction at a beam energy of 121 MeV. The reaction products were continuously transported by a He(KCl)-jet to the computer-controlled liquid chromatography system ARCA. In 0.1 M HNO3/5 X ΙΟ -4 M HF, Sg was found to be eluted within 10 s from 1.6X8 mm cation-exchange columns (Aminex A6, 17.5±2 μπι) together with the hexavalent Moand W-ions, while hexavalent U-ions and tetravalent Zr-, Hf-, and element 104 ions were strongly retained on the column. Element 106 was detected by measuring correlated α-decays of the daughter isotopes 78-s 104 and 26-s 102. For the isotope Sg, we have evidence for a spontaneous fission branch. It yields a partial spontaneousfission half-life which is in agreement with recent theoretical predictions. The chemical results show that the most stable oxidation state of Sg in aqueous solution is +6, and that like its homologs Mo and W, Sg forms neutral or anionic oxoor oxohalide-compounds under the present condition. In these first experiments, Sg exhibits properties very characteristic of group 6 elements, and does not show U-like properties.
Radiochimica Acta | 2000
E. Strub; Jens Volker Kratz; A. Kronenberg; A. Nähler; P. Thörle; Stephan Zauner; W. Brüchle; Egon Jäger; M. Schädel; B. Schausten
The fluoride complexation of the group-4 elements Zr, Hf and Rf, and of the pseudo-homolog Th, has been investigated in mixed HNO3/HF solutions by studying Kd values on both cation exchange resins (CIX) and anion exchange resins (AIX) using the automated rapid chemistry apparatus ARCA. On the CIX, the four elements are strongly retained as cations below 10-3 M HF. For Zr and Hf, the decrease of the Kd values due to the formation of fluoride complexes occurs between 10-3 M HF and 10-2 M HF. For Rf and Th, this decrease is observed at one order of magnitude higher HF concentrations. On the AIX, for Zr and Hf, a rise of the Kd values due to the formation of anionic fluoride complexes is observed between 10-3 M HF and 10-2 M HF, i.e. in the same range of HF concentrations where the decrease of the Kd values on the CIX is observed, yielding a consistent picture. For Rf and Th, on the AIX, no rise of the Kd values is observed even if the HF concentration is increased up to 1 M. By varying the concentration of the counter ion NO3- which is competing for the binding sites on the AIX resin, it could be shown, nevertheless, that Rf does form anionic fluoride complexes. Apparently, there is a more specific competition of NO3- with respect to [RfFx](x-4)- than with [ZrFy](y-4)- and [HfFz](z-4)-.
Science | 2014
J. Even; A. Yakushev; Christoph E. Düllmann; H. Haba; Masato Asai; Tetsuya Sato; H. Brand; A. Di Nitto; R. Eichler; Fangli Fan; Willi Hartmann; M. Huang; E. Jäger; Daiya Kaji; J. Kanaya; Y. Kaneya; J. Khuyagbaatar; B. Kindler; J. V. Kratz; J. Krier; Yuki Kudou; N. Kurz; B. Lommel; Sunao Miyashita; Kosuke Morita; Masashi Murakami; Yuichiro Nagame; Heino Nitsche; K. Ooe; Z. H. Qin
A carbonyl compound that tips the scales Life is short for the heaviest elements. They emerge from high-energy nuclear collisions with scant time for detection before they break up into lighter atoms. Even et al. report that even a few seconds is long enough for carbon to bond to the 106th element, seaborgium (see the Perspective by Loveland). The authors used a custom apparatus to direct the freshly made atoms out of the hot collision environment and through a stream of carbon monoxide and helium. They compared the detected products with theoretical modeling results and conclude that hexacarbonyl Sg(CO)6 was the most likely structural formula. Science, this issue p. 1491; see also p. 1451 A special apparatus enables synthesis of a compound with carbon bonds to a short-lived element produced via nuclear reaction. [Also see Perspective by Loveland] Experimental investigations of transactinoide elements provide benchmark results for chemical theory and probe the predictive power of trends in the periodic table. So far, in gas-phase chemical reactions, simple inorganic compounds with the transactinoide in its highest oxidation state have been synthesized. Single-atom production rates, short half-lives, and harsh experimental conditions limited the number of experimentally accessible compounds. We applied a gas-phase carbonylation technique previously tested on short-lived molybdenum (Mo) and tungsten (W) isotopes to the preparation of a carbonyl complex of seaborgium, the 106th element. The volatile seaborgium complex showed the same volatility and reactivity with a silicon dioxide surface as those of the hexacarbonyl complexes of the lighter homologs Mo and W. Comparison of the product’s adsorption enthalpy with theoretical predictions and data for the lighter congeners supported a Sg(CO)6 formulation.